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Abstract
Researchers have been constantly developing new methods for generating realistic human motion. A
common and popular approach is to use motion capture data or mocap data. However, this approach
produces a mountain of data and there is an increasing necessity for quick and efficient mocap data search
methods.

For text documents, search results are usually returned in the form of a list of documents’ titles. This
allows users to quickly browse the search results and easily find the documents that they are looking for.
Applying this method to mocap data requires the extraction of keyposes since displaying every frame will
only present excessive and unnecessary information.

The authors of this paper propose a simple and efficient method to automatically extract keyposes of
mocap data. The proposed method requires only O(kn) operations. Thus, users can vary the search
parameters and results will be presented interactively. Our results show that the proposed approach is
applicable to mocap data of complex motions and motions composing of many motion segments.
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1 Introduction

Motion capture is a popular technique used in
creating smooth animations of a human performing
certain actions. The data is taken by periodically
sampling the movement of the sensors, which are
attached to the performer’s body, and then cleaned
up by removing defects and smoothing measure-
ment errors or noises that might have occurred dur-
ing the sampling process. These defects may be
caused by the limitation of the hardware itself, for
example: the occlusion of optical sensors in opti-
cal motion capture devices causes the position of
the sensors to be undetected for a period of time.
For the purpose of simplicity, the data, which usu-
ally comes initially in the form of joint positions in
each frame, may be converted into another repre-
sentation, for example a skeleton hierarchy of joint
angles.

Although motion capture data, commonly called
mocap data, was not commonly used outside enter-
tainment genres such as games and movies, partly
due to the bulkiness and high cost of the required
devices, it can be expected that mocap data will
become commonplace in the near future as cheaper
and more practical devices are developed [14].

Initially, mocap data retrieval or search received
little attention due to a lack of or relatively few mo-
cap data. However, a large amount of mocap data
has been accumulated and made accessible since
then, for example: [3]. It is this accumulation of
data that has lead to an increasing demand for mo-
cap data search.

However, the research of displaying the results
of mocap data retrieval has just begun to appear,
for example: the research in [2] provides a method
to make a synopsis of mocap data by automati-
cally selecting the keyposes of the data and ren-
dering them into an image, so that the user can
understand the motion without actually watching
the whole animation. Certainly, watching the ani-
mation of every motion in order to find the exact
motion that the user wants is time and energy con-
suming. Furthermore, representing mocap data as
images enables those mocap data to be displayed
as a list, as can be seen in [5].

This paper focuses on making a synopsis of a
mocap data by automatically determining its key-
poses, representing the motion as a whole. Our
approach can be executed very efficiently and effec-
tively, allowing users to input the number of key-
poses or joint weights, and see the results imme-
diately. This efficiency becomes even more essen-
tial if we want to create a mocap database on the
Internet, and allow users to upload their own mo-
cap data to our system. Approaches with heavy
computation is not practical because they will put
much burden on the system if a lot of mocap data

are simultaneously uploaded.

2 Related Work

The problem of mocap data retrieval has been
addressed as a preliminary step before synthesizing
new motions as described in [1], and [9]. In general,
the methods used to search mocap data can be di-
vided into two categories. The first category is by
giving annotations to each frame based on a classi-
fier learned by using training data, so that ordinary
textual search can be performed. The second cate-
gory is by using content-based retrieval or query by
example, in which a motion query is initially given
as a basis to locate other motions in the database
that are similar to the motion query [4].

In most research, joint positions, angles or their
derivations are used as inputs to the systems. Since
logically similar motions need not be numerically
similar as pointed out by [9], these systems may
fail to return all logically similar motions as search
results. To address this problem, [11] proposed us-
ing geometric features that describe the relation-
ship among joint positions as inputs instead of their
positions or angles.

The problem of extracting keyposes was first ad-
dressed by [2], where the identification of keyposes
is performed by embedding the motion in a low
dimensional space and analyzing it. This method
uses a replicated multidimensional scaling (RMDS)
algorithm to reduce the dimensions of the data and
then identifies extremum points by using an iter-
ative algorithm. This method is then extended
in [7] to accommodate their use of feature values
from [11]. In contrast, [8] modeled the keypose ex-
traction problem as a constrained matrix factoriza-
tion problem and used an optimization technique to
solve it, while [10] used an optimization technique
to find a set of poses, in which the total distances
of neighboring keyposes are maximized.

Our approach, although similar to [10], differs in
that we focus on obtaining representative keyposes
which are distinct, even if the motion is cyclic, e.g
a running motion. The method proposed in this
paper can be effectively used in such situations as
described in [13].

To the data mining community, data such as mo-
cap data belongs to a category called time series
data, the research of which has been well docu-
mented. However, the majority of the research has
focused on one dimensional continuous data. For
example: [6] and [12] presented techniques to de-
tect significant points in one dimensional time se-
ries data. It is possible then, to think of applying
the same method to mocap data and approximat-
ing the significant points to be keyposes of the mo-
tion. Unfortunately, applying these techniques to
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mocap data, which is inherently a multidimensional
time series data, proves to be much harder, if not
impossible.

3 Approach

The input to our approach is a single motion
capture data with any arbitrary length, or in other
words all the frames inside a single motion capture
data M, i.e M = [fi1, f2,..., fn] where n refers to
the number of frames in the motion data. Unlike
[1] which uses time windows or groups one frame
with its neighboring frames, we treat a single frame
as one single data which is unrelated to all other
frames.

Despite treating a single frame as unrelated to its
neighbors, mocap data actually represents a contin-
uous motion, which means that the distances of the
joint positions or angles in one particular frame to
the joint positions or angles in its neighbor frames
are small. This implies that when one particu-
lar frame has been chosen as a keypose, it is very
straightforward to give penalties to its neighboring
frames by taking their distances into account, so
that they will less likely be chosen as keyposes at
the next iteration.

In calculating the distance between frames, we
take only the joint positions into account forming
a vector of V.= [4T, 47,45, -, Jm> Jins Jom) where m
means the number of joints. We refrain from using
joint angles because of the nature of rotation which
is not Euclidean, making the computation of the
distance of rotations relatively expensive compared
to the computation of the distance of positions. In
addition, from our experiment results, it can be
seen that using joint positions is adequate for our
purpose.

In the next subsection, we will introduce the con-
cept of our approach to extract keyposes from mo-
cap data. Then we will present an optimized algo-
rithm based on the concept, in which the complex-
ity grows linearly with the number of keyposes and
frames. We end this section by comparing our ap-
proach to an optimization approach using a simple
dataset.

3.1 Extracting Keyposes

Initially, we assume k as the number of keyposes
that a user wants to find in a mocap data. Then
we calculate the mean of the joint positions of all
frames in the mocap data to be used as a reference
point.

After the preliminary steps are completed, we
define the frame which has the longest distance to
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(a) Calculating the average point

(¢) Determining the second keydata

Fig. 1: Extracting Keyposes. Unfilled large cir-
cle denotes the reference point, small circles de-
note the data, while filled large circles denote

the keyposes.

the reference point, i.e., the mean of the joint po-
sitions, as the first keypose. Next, for each frame,
or keypose candidate, we calculate the distances to
its nearest keypose and to the reference point, and
assign the shorter distance to the frame. Then, we
pick the frame which has the highest assigned value
as the second keypose. We use Euclidean distance
to measure these distances and repeat these steps
until the number of keyposes reaches k. The illus-
tration of these steps can be seen in Figure 1.

These selected frames basically represent ex-
treme body poses which have the longest distances
from other body poses in the motion, and there-
fore we are convinced that they are proper candi-
dates for keyposes of a motion. When users look at
such multiple extreme poses at the same time, it is
relatively easy to visualize the poses inbetween al-
though they are actually not displayed. Conversely,
it is difficult, if not impossible, to visualize the ex-
treme body poses when only the inbetween poses
are shown to users. These two reasons convince us
that our simple and efficient approach explained
above can extract keyposes from mocap data.

Since our approach is very efficient, the problem
of determining the best value of k£ or the number of
keyposes can be left to the user to decide, while still
getting the results in real time. Naturally, long mo-
tions will require high values of k, while low values
will be adequate for short motions.
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3.2 Optimized Algorithm

If the number of frames in a mocap data is n,
the number of joints considered in the calculation
is m and the required number of important poses is
k, then the cost required to determine the keyposes
using the optimized algorithm is O(kmn), in which
k is generally very low. If the value of m is also
low, then we can approximate the complexity to be
O(kn). Using the above notations, the optimized
algorithm is defined in Algorithm 1.

Input: The joint positions of all the frames in
a motion capture data M and the
number of keyposes k

Output: The keyposes K

K« [}

R + CalculateRefPoint(M);

© 4 0;

while ¢ < n do

D; + Distance(fi,R);

assign D; to fi;

increment i;

end

while the number of elements in K < k do
f < the frame which has the longest D;;
add f into K;
i< 0;
while ¢ < n do

d <+ Distance(f;,f);

if d < D; then

| Di <+ d;

end

increment i;
end

end
return K;

Algorithm 1: The optimized algorithm to

extract keyposes from mocap

In contrast, the complexity of the approach in [2]
is O(kn?) for the preliminary steps to compute the
distances between frames, which is then added to
the complexity of solving an optimization problem
to reduce the number of dimensions. These steps
should be done before the approach is able to ex-
tract the keyposes iteratively. One may consider
trying this approach without reducing the num-
ber of dimensions to reduce the complexity of the
process. However, this dimensionality reduction is
crucial in this approach as stated in the paper, and
without it, we show that our results are better in
Figure 2.

3.3 Comparison

Since high dimensional data cannot be easily vi-
sualized, we use a simple one dimensional sine wave
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(b) Action synopsis without dimensionality reduction

Fig. 2: A comparison of our approach and [2]

without dimensionality reduction.

dataset to illustrate the differences of our approach
to the optimization technique described in [10] for
the sake of clarity. As can be seen in Figure 3, this
sine wave dataset is similar to mocap data in that
it is continuous, it has both local and global maxi-
mum (minimum) points, and it may or may not be
periodical depending on the interval.

For the optimization technique, we use a max-
imization function E?ilDfi’fi+1 with a constraint
t(fi) < t(fi+1) where k denotes the number of key-
data, f; denotes the i-th keydata, and ¢(f;) denotes
the time when f; appears. In the figure, we can see
that although [10] also obtains representative key-
data, some of them are the same as other keydata,
i.e. they have the same values. Meanwhile, our
method obtains representative keydata, the values
of which are distinct. We further this comparison
by applying both approaches to mocap data in the
next section.

At the same time, note that our approach man-
ages to obtain keydata consistently, i.e. the key-
data obtained by lower k values still exist when we
use higher k values, unlike the results of [10], in
which the keydata located second from the left for
k = 5 is not chosen again as a keydata for k = 7.
Further, it is straightforward for our approach to
extract only one keypose, i.e k = 1.

4 Experiment

Most of our data come in the form of a skeletal
hierarchy of Euler joint angles, with the coordinate
system shown in Figure 4. We convert this rep-
resentation into three dimensional joint positions
by ignoring global X and Z translations of the root
joint because we choose to regard XZ planar trans-
formations of the root joint as irrelevant in calcu-
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Fig. 3: A comparison of our approach and an
optimization approach by [10] using & = 5 and
k=7

lating the keyposes. Unlike several previous ap-
proaches which also ignore the Y rotation of the
root joint, we take all the rotations into account.
Such approach allows motion segments that move
along different directions to be recognized as dif-
ferent motion segments, for example if we have a
walking motion which consists of a motion segment
of walking to the east continued by walking to the
west, then we can obtain the keyposes of both mo-
tion segments and show them to users so that they
can understand that the motion represents a for-
ward and backward walking motion, and not just
a one directional walking motion. Further, as can
also be seen in Figure 4, we select nine joints from
all the joints of mocap data that can well represent
human movement in daily activities, such as walk-
ing, running, and jumping, as elements in a vector
V', which is described in section 3.

We compare our results to the results of [10] as
described in the previous section. To highlight the
differences, we intentionally choose a cyclic mocap
data and a non-cyclic mocap data for comparison.
As can be seen in the case of a cyclic mocap data in
Figure 5, the approach in [10] allows the existences
of multiple keyposes which are similar, while our
approach focuses on obtaining keyposes, which are
distinct. On the other hand, the results of both
methods when applied to a non-cyclic mocap data
do not show a lot of differences as can be seen in
Figure 6.

Unfortunately, even in the case of cyclic motions,
it is not self evident which results are superior and
we believe that both methods are based on different
objectives. While one particular application may
prefer the existence of similar keyposes, another ap-
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Fig. 6: Comparison for a non-cyclic mocap
data.

plication may prefer to obtain only keyposes which
have long distances to each other. For example,
an application which focuses on displaying motion
variations and the differences of a motion compared
to the others may find our approach more attrac-
tive, while [10] may be favorable for applications
which aim to show the motion periodicity.

As another experiment, we test our approach
on a multiple kicking mocap data, which has 1471
frames, and calculate the required time to extract
keyposes for numerous k values using an Intel Core
Duo 1.86 GHz processor having 3GB memory. It
can be seen that our approach is efficient as shown
in Figure 7, and the required time can be approxi-
mated to grow linearly as the k value increases.

4.1 Manipulating the Number of
Keyposes

For interactive applications, we believe that a
user should be able to increase or decrease the num-
ber of keyposes as he/she wishes and be presented
with the results very rapidly, since the appropriate
number of keyposes depends on the content and the
length of the mocap data itself. Recall that in our
approach, all keyposes obtained by lower k£ values
still become keyposes for higher k values. Thus,
incrementing k only requires O(n) operations to
add one additional keypose, while decrementing k
does not require any operation at all. On the other
hand, optimization techniques such as [10] requires
a full execution each time the number of keyposes
is manipulated since keyposes for lower k values do
not always become keyposes for higher k& values.

A5 FEPRIRISTRAA S B TRL

(a) Multiple kicking mocap data with 1471 frames

Time (ms) .,

#Keyposes
(b) The time required to get keyposes

Fig. 7: Calculating the required time to extract
keyposes.

4.2 Weighted Joints

Giving weights to the joints so that the distance
of certain joints between poses is amplified or di-
minished is useful if a user wants to pay more at-
tention to the movement of those joints. This can
simply be obtained by giving weights to the joints.
Since we require only O(kn) operations, our ap-
proach allows a user to specify the joint weights
and see the results very rapidly.

The results of giving more weights to a combina-
tion of hand and elbow joints, and a combination
of knee and foot joints, can be seen in Figure 8.
Figure 8 (a) shows us that giving more weights to
hand and elbow joints will extract keyposes that
prioritize the variations of hand and elbow joints
instead of other joints. A similar case is also shown
in Figure 8 (c) where more priority is given to the
distances of the foot and knee joints when extract-
ing keyposes.

4.3 The Effect of Global Transla-
tion in the Vertical Axis

Since we take global translation in the verti-
cal axis into account in calculating keyposes, the
change in root position will also cause the joint
positions to change. This particular attribute will
cause two poses which only have differences in their
root positions to have longer distances because the
differences of the joints are also added, even though
the root is given the same weight as the other joints.
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Fig. 8: A comparison of not using weights and
using weights. Red and yellow circles highlight
keyposes which are extracted and omitted re-

spectively after adding weights. Two similar

keyposes are connected with a green line. (a)
More weights for hand and elbow joints. (b)
No weights. (¢) More weights for foot and knee

joints

In other words, there is a hidden weight for the
root.

To address this problem, we calculate the differ-
ence of joint positions, by first transforming them
so that the corresponding roots match to each
other, and then perform the distance calculation
as illustrated in Figure 9. In Figure 9, the differ-
ence between pose A and pose B can be modeled as
(diff (roota, roots) + diff (jointa, jointy )), and not
(diff (rootq, rooty) + diff (jointe, jointy)) which is
commonly used, where diff (x,y) measures the dif-
ference between z and y, for example by measuring
their Euclidean distance.

By treating the problem this way, the hidden

jointy
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T |ati Distance between
\ans (IO \the two joints

joint,

root b

root , (root ;)

Fig. 9:

(rooty, jointy)

Pose A (root,,joint,) and pose B

No. 3, pp. 130 — 139

(@

2
(b)

Fig. 10: Jumping motion (a) without matching

and (b) with matching roots using w0t = 5.

weight of the root joint that previously existed is
eliminated, and applying weights, as described in
the previous subsection, can be used in order to
give longer or shorter distances to the difference of
root positions compared to the differences of the
other joint positions.

In our experiment, giving wroor = 5, while let-
ting the other weights equal to one generally yields
satisfactory results as can be seen in Figure 10.
For this configuration, frames which show the pose
variations will be prioritized over frames which only
convey the movement of the body, i.e the root joint,
when extracting keyposes.

It should be noted that increasing the number of
keyposes will generate similar results. We reduce
the number of keyposes only to three in Figure 10
to demonstrate that more representative poses can
be discovered earlier by applying this method.

Although we apply this method only to the
root, it is pretty straightforward to apply the same
method to other joints if we would like to use the
local positions of the joints relative to their par-
ents, instead of their local positions relative to the
root for the calculation of keyposes. However, in
selecting keyposes to represent movement in daily
activities, we believe that this is not the general
case and therefore refrain from doing so.

5 Discussion

In this paper, the authors have introduced a sim-
ple method to extract keyposes from mocap data.
We have also shown that the computation from us-
ing the proposed method is very efficient, allowing
users to increase or decrease keyposes as necessary,
and at the same time allowing them to give weights
to certain joints. We present the keyposes of several
other complex motions in Figure 11. It can be seen
in the figure that our method successfully obtains
representative keyposes, and users will be able to
understand what motion is contained in the mocap
data by only looking at the keyposes. In addition,

- 136-



OOOOOO0O0O Vol 9, No. 3, pp. 130 — 139

the last motion in Figure 11, which is a punching
and kicking motion, shows that our approach also
works for mocap data which is composed of more
than one motion segment.

As we pointed out in the previous section, our
method is similar to [10] but the results are very
different if the inputed mocap data is cyclic. We
believe that both methods complement each other
and one method may be more appropriate for cer-
tain applications than the other although further
investigation is required to identify such applica-
tions. However, the complexity of our approach is
the lowest possible given k keyposes and n data,
and therefore we believe that our approach is ap-
plicable to most situations.

One weakness of our approach is that, since our
approach works by first looking for the pose which
is the furthest from the mean, it is weak against
unsmoothed noise inside the data or unremoved
defects from the recording of motion capture. To
alleviate this problem, these noises must first be
smoothed by using methods such as Gaussian fil-
tering.

In this paper, the keyposes are represented in a
side by side view, in which several images of one
mocap data are arranged in a row, without consid-
ering the actual positions of the actor in the mo-
tion. Rendering the keyposes according to its ac-
tual positions yields plausible results if the actor is
not staying at the same place, but confusing results
if the actor maintains his/her position in a certain
spot even if less important poses are rendered us-
ing higher transparencies. On the other hand, [2]
introduced spatially expanded layout to place key-
poses in a layout which preserves the overall struc-
ture of the activity instead of the original spatial
location. However, this is a rather expensive oper-
ation since it requires an additional minimization
operation. We believe that side by side view is able
to show the relationship of one frame to the other
frames well enough without consuming too much
space on a user’s display monitor. This can also
be extended so that the distances between poses
account for their distances in time as described in
[7].

In the future, we are planning to combine our
approach with a mocap data retrieval method, cre-
ating a system on the Internet that can search mo-
cap data and display the search results effectively
as in searching text documents, which should also
allow users to upload their own mocap data to the
system and process the uploaded mocap data effi-
ciently, even during simultaneous upload. Such a
system would allow other users who do not have
access to mocap data devices to search mocap data
rapidly and download the desired datasets, which
can then be used to animate their own 3D models.
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(g) Fighting punch and kick

Fig. 11: Several mocap data and their first five selected keyposes. The order of the keyposes are
denoted by the keyposes’ transparencies.
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