
���������
	��

Vol.4 No.4 pp.159 – 167

Pre-Step and Post-Step Deformation Schemes for Fastening
Band-Shaped Twisted Cloth

Norio Sato, Kazuhiro Suzuki, Qinglian Guo, and Kyoko Kato
Dept. of Information and Computer Science

Kanazawa Institute of Technology

Abstract

We have developed a simulation program that presents the process
of fastening band-shaped cloth objects. These objects are twisted
in 3D space to mimic the movements of tying garments such as
Kimono sash. Even using extensive collision handling, this simula-
tion is tough. The difficulty lies in the complex object contacts: The
movements of different parts of a long contiguous deformable ob-
ject conflict with each other causing numerous collisions during the
fastening process; Such collisions cause implausible deformations;
Moreover, the collisions in different angles are prone to fatal pen-
etrations that are not simple to remove. We propose three schemes
to solve these problems. One is a pre-step mechanical scheme for
calculating fastening force to move the object smoothly. Other two
are a post-step geometrical correction scheme to smooth deforma-
tions and a set of schemes to remove penetrations. These schemes
proved to enable robust and visually realistic simulations with low
cost.

1 Introduction

Cloth modeling and simulation (or animation) is a matured topic
in computer graphics (CG). In this paper, we present how to simu-
late the process of fastening a “twisted cloth object” that we refer
to as “3D ribbon”, on which no work has been reported. We have
encountered with a problem of much heavier contacts among de-
formable objects, compared with previous researches on cloth sim-
ulation such as draping on still-life objects, or fitting to a body, or
hanging in the air.

Figure 1 shows a snapshot how our prototyped software works. The
initial user’s input is a 2D curve, which is high-lighted. We generate
a 3D ribbon as rendered with texture attached. Then, we fasten it
around some other object as rendered in wireframe.

Figure 1. A snapshot: how the prototyped software works.

In the rest of this paper, section 2 explains the difference of our
problem from those of related works. Section 3 introduces our pro-

totyped software, and offers the pointers to the Section 4 and Sec-
tion 5 that describe our algorithms in detail. Section 6 shows results
and evaluates our achievement. Section 7 briefly discusses the ex-
tensions to make the achievement useful.

2 Related Works

Knot theory [1], where knots are defined as twisted closed loops in
3D space,is not directly relevant to our work. Two knots are con-
sidered equivalent, if one of them can be deformed to the other. Al-
though the physical concepts such as width and forces are ignored,
the theory gives us some hints. One useful property for our work is
that twisted curves on a 2D plane can be regarded as the projection
of “alternate knots” in 3D space.

Cloth modeling and simulation (or animation) is directly relevant to
our research. In most solutions in literature[2, 3, 4, 5, 6, 7, 8, 9, 10],
the cloth is modeled as a mass-spring network [2, 3] or sometimes
a chain of rods [5], which makes it possible to simulate its defor-
mations such as forming wrinkles [2, 3, 4, 5, 6], fitting 2D patterns
to human bodies or sawing them[2]. Visual reality and simulation
robustness are the essential requirements for this kind of simulation.

Figure 2. Movement and touches to fasten a ribbon: (a)surface
to surface, (b)edge to surface, and (c)edge to edge.

Sharing the solutions with these previous works such as collision
handling, a new problem must be solved in our simulation. As
shown in figure 2, we must move a 3D “ribbon”, which is a twisted
contiguous deformable object, smoothly through the free space that
is sandwiched by itself and the still-life object and is getting nar-
rower and narrower while we tighten the ribbon. Such a movement
causes conflicts in different parts of the ribbon. These parts collide
with each other in different angles, not always “surface to surface”,
but also “edge to surface”, and “edge to edge”.

– 159–

���������
	��

Vol.4 No.4 pp.159 – 167

3 Overall Features

3.1 Prototyped Software

Figure 3 shows the construction of our prototyped software. The
components are shown in boxes and described in detail in section 4
and section 5. The input and output of each component is shown in
Figure 1, and has already been explained in Section 1.

User interface (LightWave)
�

2D curve�

3D ribbon generator (Section 4)
�

3D ribbon�

Fastening deformation processor (Section 5)
�

Deformed 3D ribbon�

Renderer & viewer (Open GL)
�

Animation
Figure 3. Prototyped software construction.

The software is coded in VC++(R) 6.0 using OpenGL library.
We have integrated it to a popular commercial modeling software
LightWave 3D (R) (referred to as LW) as a plug-in [11] to share its
facilities.

3.2 How to generate a 3D ribbon ?

Since it is difficult for a user to input a curve in 3D space when
using a regular 2D input device such as a mouse, we provide with
a function to generate a 3D ribbon from a 2D curve that is defined
by the user freely by using a mouse. The 3D ribbon is generated by
adding a displacement at each crossing point along the third dimen-
sional axis.

We smooth the generated 3D curve to define the initial state of a rib-
bon. Then, we add width in orthogonal direction with the curving
to define a ribbon. The rest of the problem is reduced to the cloth
modeling. We populate the mesh vertices with masses and connect
them by virtual springs.

3.3 How to fasten a ribbon ?

Fastening a ribbon in real world is a subtle feedback process that is
controled by human hands. In our simulation, the fastening force is
simple and reproducible so that we may show the process in a com-
prehensive way. Instead of two (invisible) hands, we impose forces
to every part of the ribbon prior to the calculation of deformations,
which we refer to as “pre-step fastening force calculation”.

3.4 How to deform a ribbon ?

The “mass-spring model” is promising. The resistance force of
springs to the elongation and shrinking deforms the model prop-
erly. “Collision handling” is a big issue. Repulsions to free space
cause another effect than the spring resistances, and thereby, affect

the deformations of the object so that it may not intersect with it-
self or with other objects. Because the collision test is an expensive
computation, we have implemented the “hierarchical object subdi-
vision” scheme to minimize the number of the tests.

Two side effects occur as a consequence of the responses to col-
lisions. One is the over- and under-elongations of springs that no
longer justify the spring model. The other is the penetrations be-
tween objects (we refer to as “errors”). Because both problems stem
from the discretized model and time step, they are very difficult to
circumvent by any calculation accuracy.

One remedial but effective solution is geometric corrections being
done each time after the collision handling. Two iterative processes
we have implemented solve these problems. One is for smoothing
the deformation, which we refer to as “post-step correction”. This
increases the deformation stability significantly, though causes er-
rors. The other is for recovering from errors, which we refer to as
“error recovery”. Both corrections play essential roles in our simu-
lation where objects contact heavily with each other.

4 3D Ribbon Generator

4.1 Defining a 3D Curve that Represents the
Initial State of Ribbon

We regard a twisted 2D curve as a “regular projection” of a string
“alternate knot” in 3D space: A crossing point is regarded as two
distinct points in 3D space. Walking along the string from one end
to the other, the crossing over and beneath the crossing points come
alternately[1].

The 3D curve is recognized as a sequence of points that are con-
nected by straight lines. One point corresponding the crossing is
“pulled” along the specified axis (typically “y-axis”), whereas the
other is “pushed” so that they can make space for the specified
width of the ribbon. Then, we draw a smooth 3D curve based on
the LW standard curve called “Catmall-Rom Spline Curve”, which
is a parametric three-degree curve using four adjacent points[12].

4.2 Adding width to 3D curve to create 3D rib-
bon mesh data

As illustrated in figure 4 upper, for each plotted point, we find a
vector to add width that is orthogonal with the tangent to the curved
plane on which the 3D curve runs. The lower depicts the result.

Roughly speaking, the vecotr at point Pi is the average of�����������
Pi � 2Pi � 1 	

�
�����
Pi � 1Pi,

�������
Pi � 1Pi 	

�������
PiPi 1, and

�������
PiPi 1 	

�����������
Pi 1Pi 2, where

“ 	 ” means the cross product of two vectors1 We add the specified
width along with this vector to both sides of point Pi, and allocate
the specified number of particles on this width line.

5 Fastening Deformation Processor

Figure 5 shows the pseudo-code of the ribbon generator. The details
are described in the following subsections.

1At point P0, this vector is fixed along the axis (typically “y-
axis”) for the space making, and at Pn the average of the formar
two.

– 160–

���������
	��

Vol.4 No.4 pp.159 – 167

Figure 4. Adding width to 3D curve to create 3D ribbon mesh
data: how to define the ribbon surface and an example.

Setting material properties (see Sec. 5.1)
For each time step �

Calculating pre-step fastening force (see Sec.5.2)
Calculating acceleration, velocity,

and displacement (see Sec.5.3)
Detecting collisions (see Sec. 5.4)

while � collision
Update velocity, displacement

Smoothing by post-step correction (see Sec.5.5)
while � over-stretched edge

Apply post-step correction
Recovering from errors (see Sec.5.6)

while � edge penetration
Apply error recovery schemes�

Figure 5. Conceptual pseudo-code of the fastening deformation
processor.

5.1 Setting Material Properties

We generate a loosely knotted ribbon automatically as described
in the previous section. This can be input into our simulation sys-
tem via LW API. We model the cloth as a “mass-spring” network.
The springs that connect adjacent particles give the resistance to
stretching and shrinking, those along with the diagonal lines give
the resistance to shearing, and those that connect the particles of
distance two give the resistance to bending (refer to [2]).

LW allows us to design a background object, which can be input
by the LW API as a set of polygon meshes. Every its polygon has
its fixed normal vector, and we give the vertices boundless mass
(m � 1 � 0, where m is the particle mass).

5.2 Calculating Pre-Step Fastening Force

As shown in figure 6, we populate forces at every part of the ribbon.
We move every particle of the ribbon toward one of its ends along
the tangent direction of the smoothed curve of the ribbon. The force
strength is made proportional to the distance from the center axis of

the background object to the particle2, and thereby, we smooth the
movement of the ribbon.

Figure 6. Fastening pre-step force calculation.

5.3 Calculating Acceleration, Velocity and
Displacement

For each particle, we calculate from the spring resistance the ac-
celeration, the velocity, and the displacement for the movement to
deform the ribbon. We add air resistance to disperse energy and
stabilize the simulation, while gravity and frictions are excluded
to fasten the ribbon smoothly. We use “Runge-Kutta fourth order
method” for the mechanical equation to minimize numeric errors.

5.4 Detecting Collisions and Adding Repul-
sions

5.4.1 Testing Collisions

A collision test is a proximity test between two triangles that do not
share any vertex. Two types of collisions are essential to handle.
One is particle to polygon, and the other is edge to edge for simula-
tion and visual coherency reasons, respectively. For each vertex of
one triangle, its proximity to the other triangle is tested. For each
edge of one triangle, the proximity to the other triangle is tested.

Our test scheme is highly preventive from penetrations. To do so,
we use a “time bounding box” for each polygon, which surrounds
its “trajectory” from the current position to the assumed position
for the next step. For each pair of polygons, if their time bounding
boxes intersect with each other, their precise intersection is tested.

For testing “particle to polygon” type collisions, as illustrated in
figure 7, we test the intersection between the trajectory line of the
particle from the current (D) to the next step position (D �)and two
triangles that are the current (� ABC) and the next positions of a
polygon (� A � B � C �).
For testing “edge to edge” type collisions, as illustrated in Figure
8, we use a rectangular trajectory of the edge from its current and
next positions. Dividing the rectangular into two triangles, the test

2For the particle at Pi for i � n � 2 along the length of the rib-
bon, the fastening force fi is � ∑i m

j 	 i � m � Pj
� Pj � 1
 � ∑i m

j 	 i � m � Pj
�

Pj � 1 �
 	 li, where m is some number (we use the number of parti-
cles of width), and li is some value propotional to the distance from
the center axis to the particle (we use such a value as to move the
particle by an edge length during one time interval). The direction
is opposit, i.e., � fi for i � n � 2.

– 161–

���������
	��

Vol.4 No.4 pp.159 – 167

Figure 7. Testing a particle-polygon type collision.

is reduced to several intersection tests between a line and a triangle
(see [13] for the formulation).

Figure 8. Testing an edge-edge type collision.

5.4.2 Adding Repulsions

Each time a particle is influenced by a collision, a new veloc-
ity is given according to the momentum conservation law (see
literature[8] for the formulation). We use a small value for the re-
pulsion coefficient for simulation stability. For a particle-polygon
collision, as in figure 7, the new velocity is calculated by “dot prod-
uct” of

� �
DP and the normal vector of � ABC (see [8] for the formu-

lation). For an edge-edge collision, as in figure 8, the repulsion of
the edge DE is determined by the “cross product” of

� �
DE and

� �
AB.

5.4.3 Reducing Redundant Collision Tests

Reducing redundant collision tests is mandatory. While no library is
available, we appreciate the thorough prescriptions in literature[2,
8] to implement two schemes from scratch and to evaluate their
effect:

Space enumeration scheme[8]: The number of space elements
increases by somewhere between linear to square order of
magnitude for the number of polygons.The efficiency is quite
insufficient for our simulation. A coarse ribbon of even
4 	 300 mass-spring granularity is heavy enough to stop the
fastening simulation on its way.

Hierarchical object subdivision scheme[2]: Although this
scheme is a much bigger task to implement than the above,
its optimizing effect is much more significant. The number of
tests increases only by logarithm order of magnitude for the
number of polygons. The performance gain proved to be sig-
nificant, which allows us to simulate fine-grained ribbons of

more than 8 	 300 mass-spring in a few minutes.

In the latter scheme, we build a hierarchical tree for each object.
Each leaf represents a polygon. Each node represents either a re-
gion of leaves or a group of regions. Taking one polygon, three
adjacent polygons such that their contour length is minimum, are
put together to form a group of one rank higher in this tree.

For each node, a “bounding box” and a “curvature” are calculated
efficiently in bottom-up order by “space OR” and “bitwise AND”
operations, respectively. Self and external collisions can be de-
tected in top-down order for the hierarchical tree, where the cur-
vatures are used for the collision test possibility between adjacent
regions, while the bounding boxes are used for the test between
non-adjacent regions.

One simplification we have made is to build such trees only once
before the simulation starts. For simple shaped ribbons, building
the tree for each simulation step is relatively expensive. As de-
scribed later, this scheme is very useful also to process the “error
detection” efficiently.

5.5 Smoothing by Post-Step Correction

The mass-spring is a fairly reasonable model for cloths, only while
their elongation or shrinking is within a small range. However, due
to the discretized time and model itself, the collision responses in-
evitably cause over elongation or shrinking. This is fatal to our
simulation.

Using non-linear resistance of springs leads us to numeric insta-
bility due to the granularity of the time step. One safe way is,
as shown in figure 9, to moderate the deformation by means of
geometric modification. This is used by a simulation of hanging
flags[9]. When two particles are over-stretched, they are brought
together along the axis while preserving their center. Doing this
correction iteratively until over and under stretches disappear3, we
can circumvent implausible deformations. A serious drawback to
our simulation is that such a geometric correction, as this correc-
tion, is done independently of the mechanical calculation and col-
lision handling, causes too many penetrations into the ribbon itself
and into the background object.

To minimize this undesirable side effect, we have improved this cor-
rection scheme so that the positional adjustments take place along
the tangent direction to the “smoothed” surface curvature. We ap-
proximate this displacement, as shown in figure 9, by moving the
particles along the length direction of the ribbon and then along the
width direction. Doing this bit by bit iteratively by ten times as its
limit until the over and under elongations disappear, it proved that
the side effect decreases significantly. We observe that the ribbon
no longer penetrates to the background object, leaving a few self-
penetrations around crossing parts of the ribbon.

However, even if we can decrease the penetrations, this side effect
is unavoidable4 , and therefore, should be removed by the error

3within 10% of the natural length
4A recent proposal[10] on smoothing, which is applied to drap-

ing and folding, is to use “adaptive time step”(to handle multiple
collisions) and to “adjust velocities instead of postions” (to adjust
the spring stiffness), and thereby to guarantee penetration free sim-
ulation. In the problem of fastening a ribbon, however, we would
have to decrease the time step constantly and would have little
chance to increase it to proceed the simulation.

– 162–

���������
	��

Vol.4 No.4 pp.159 – 167

Figure 9. Smoothing by post-step (geometric) correction.

recovery schemes as described in the next section.

5.6 Recovering from Errors by Post-Step Pen-
etration Removal

5.6.1 Causes of Errors

In numeric integration, since the time step is some discrete value,
erroneous surface penetrations are by any means unavoidable. In
our simulation, there are two causes: 1) As shown in Figure 10,
One collision response (at P1) may cause another collision (at P2)
before the next time step. 2) As shown in figure 11, The above men-
tioned post-step correction, in our experience, more often causes
penetrations. Unless we remove the penetrations, further steps of
the simulation result in serious incoherences sooner or later before
we complete the fastening.

Figure 10. Errors due to collision response.

Figure 11. Errors due to smoothing.

5.6.2 Detecting Errors

The algorithm to detect “errors” is almost the same as the collision
detection test. This is closely related to the hierarchical object divi-
sion scheme. By using curvature and bounding boxes set up in the
hierarchical tree, the “penetrating edges”can be found efficiently.

5.6.3 Error Patterns and Recovery Schemes

The penetrations of the ribbon into the background object is simple,
and can be recovered by the following scheme:

(Scheme A) Recovery from “ribbon penetration into back-
ground (still-life) object”: This is applied to all the erroneous
edges of the ribbon. By counting the number of the neighbor-
hood edges to an edge that is not erroneous, we decide which
particle of an edge is erroneous and is to be moved. The ap-
propriate moving direction is the normal vector of the triangle
of the background object running “from the inside to the out-
side of the object”. The moving length is the distance from
the particle to the crossed triangle.

The self-penetrations of the ribbon, which is specific to our prob-
lem, are much more complicated. The ribbon has no inside or out-
side. Some of the parts collide in different angles with each other.
Figure 12 classifies typical error patterns that are caused by the self-
collision patterns of a ribbon in three different angles. We approx-
imate the collisions in different angles as one of these three cases.
We remove the errors of these three error patterns by the following
two schemes:

(Scheme B) Recovery from “ribbon-edge penetration into
ribbon-edge or into ribbon-surface”: This scheme is ap-
plied only to the erroneous edges along the “ribbon edge”.
Such an edge has two erroneous particles. As shown upper
two pictures in figure 12, we “shrink and curl the ribbon edge
along the width direction”. To do this, as shown in figure 13,
we determine the moving direction by taking the average of
the tangent vectors along the curvature starting from the er-
roneous particle to, if present, the first folding particle as on
the right-hand side, otherwise to the other edge of the ribbon
as on the left-hand side. For edge vectors e0 � e1 ��������� en � 1, if
e0

� ei � 0 for some i, the starting particle of the ei is the fold-
ing particle. The average of e0 ������� ei � 1 are the direction to
move the particle. Along the width direction, several neigh-
borhood particles are moved together, as shown in figure 14.
By applying this also to several neighborhood particles “along
the ribbon edge”, we shape a smooth wrinkle.

– 163–

���������
	��

Vol.4 No.4 pp.159 – 167

Ribbon-edge to ribbon-edge error recovery
by scheme B.

Ribbon-edge to ribbon-surface error recovery
by scheme B.

Ribbon-surface to ribbon-surface error recovery
by scheme C.

Figure 12. Self-penetration error patterns and recoveries.

(Scheme C) Recovery from “ribbon-surface penetration into
ribbon-surface”: This is applied to all the erroneous edges
of the ribbon. The difference from Scheme A is that the nor-
mal vector shows us only the angle, not the direction. We
take the one side of the plane containing the crossing triangle
where the majority of the neighborhood particles exist, as the
correct side to move. This is known by the “dot product” of
two vectors: One is the normal vector of the crossed surface;
The other is from the crossing point to the particle position.

5.6.4 Iterating Error Recoveries

Figure 15 shows the error recovery process as a whole. Since it is
difficult to “recognize the error patterns” in figure 12 and the former

Figure 13. Moving errorneous particles on the ribbon-edge in
Scheme B.

Figure 14. Penetration removal in Scheme B (ribbon-edge to
ribbon-surface or to ribbon-edge).

two patterns are more likely, we prioritize the schemes. The above
mentioned “scheme A” is independent of others, and so can precede
or follow other schemes. Scheme B (for ribbon-edge) should pre-
cede scheme C (for others). For each iterative step, therefore, we
apply the schemes A, B and C in this order. The error detection
processing precedes each execution of these schemes.

We iterate the error recovery processes until all the penetrations
disappear, or no further improvement is obtained. This physically
means an approximation of “multiple collision” handling (e.g.,
queuing the possible collisions) within a discrete step, which would
not work for the interaction between deformable edges and sur-
faces.

while (� errors and � improvement) do �
Setup hierarchical tree;
Test ribbon penetration into background object;
while (� error) Apply “scheme A”;
Setup hierarchical tree ;
Test ribbon self-penetration;
while (� error along ribbon-edges)
Apply “scheme B”;

Setup hierarchical tree ;
Test ribbon self-penetration;
while (� error) Apply “scheme C”;�

Figure 15. Conceptual pseudo-code of the error recovery pro-
cessing.

6 Results and Evaluations

6.1 Visual Reality

Figure 16 and shows an example. The upper and middle shows the
same simulation from different angles, where the parameters are:
16 	 400 particles, M � 1 � 0 � k1 � k2 � k3 � 5 � 0 � dt � 0 � 01, where M is
the total mass of the ribbon, k1, k2 and k3 are spring resistance for
metric, shearing and bending, dt is the time step. In the lower case,
the granularity is lower: 8 	 400 particles, M � 1 � 0 � k1 � k2 � k3 �
10 � 0, and dt � 0 � 01, i.e. the same stiffness as the upper.

Figure 17 shows another example of the same granularity and the
stiffness as the upper and lower case of figure 16.

– 164–

���������
	��

Vol.4 No.4 pp.159 – 167

We observe that the fastening process has almost been completed,
leaving few penetrations that are invisible. With higher granularity
(16 	 400 particles), the material is more smooth having more real-
istic wrinkles than lower cases (8 	 400 particles). Figures 18 and
19 show other examples. A ribbon is fastened around a cylinder and
a small object. In both cases, cloth-like wrinkles are observed.

Figure 17. Fastening a narrower ribbon (granularity of 16 	 400
particles, other parameters are the same as Figure 16) around
a hourglass cylinder .

6.2 Simulation Robustness

The simulation is stable for a wide range of the stiffness for k � m � 0
to 106, and dt � 0 � 01, where k is the spring registance, m is the mass
of a particle, and dt is the time step value. In our experience, the
appropriate values for cloths are several 104. The values of fewer
orders of magnitude are suitable for “necklace chains”, and those
for larger orders of magnitude are for “papers”.

6.3 Computational Cost

With the granularity of a few thousand particles (8 	 400), the sim-
ulation speed is reasonably fast, though a bit slower than real-time,
within ten minutes in today’s ordinary desktop and laptop comput-
ers that use 1 GHz to 2 GHz Pentium CPUs. Doubling the width
granularity (16 	 400), it takes several tens of minutes to complete
the fastening. In either case, providing with a viewing software, we
can reproduce the simulation at high speed.

7 Future Extensions

Following extensions are to be considered:

Tightness: We can show to what degree the fastening is done dur-
ing the simulation. One good measure could be the number of
error recovery iterations. In our experience, the ribbon moves
until it gets sandwiched by itself and the background object.
Continuing further, the crossing gets twisted thin band-shape.
When the ribbon gets tight, a recovery causes another recov-
ery. As a consequence, the number of the error recovery iter-
ations rapidly increases and the simulation gets slow.

Non-band-shaped ribbons: The 3D ribbon generation should be
extended to cover the “ribbons in our daily life”, such as scarfs

Figure 18. A process of fastening a ribbon (16 	 400 particles)
around a cylinder.

Figure 19. Fastening ribbons (8 	 400 and 16 particles) around
a small object.

and cravats, that have varying width. Some more flexible in-
terface should be provided to allow the objects of arbitrary
width. Adding width is restrictive at present. In the process
of smoothing the 3D curve, too wide ribbons may cause pene-
trations to itself. When the penetration is not heavy, the “error
recovery” works well (this happens even at present), other-
wise the simulation fails. Therefore, non-flat surfaces should
be generated to allow for wide ribbons. One approach could
be to generate rounded, waved or folding surfaces. Another
approach could be to build natural twisted surfaces with wrin-
kles around the background object at ribbon generation time,
e.g., to increase the width step by step, while applying the
error recovery schemes at each step.

Complicated knot patterns: Most of the decorative garment
knotting is non-alternate, and not simple. We need some func-
tion to draw free and smooth curves in 3D space. Next, more
dynamic fastening forces should also be considered. It could
be appripriate to combine simple knottings to shape compli-

– 165–

���������
	��

Vol.4 No.4 pp.159 – 167

Figure 16. Simulation examples of fastening a ribbon around a hourglass cylinder. (Upper and middle: 16 	 400 particles M �
1 � 0 � k1 � k2 � k3 � 5 � 0 � dt � 0 � 01, where M is the total mass of the ribbon, k1, k2 and k3 are spring resistance for metric, shearing and
bending, dt is the time step. Lower: 8 	 400 particles, M � 1 � 0 � k1 � k2 � k3 � 10 � 0, and dt � 0 � 01, i.e. the same stiffness as the upper.)

cated knotting, e.g., to fasten the knots one by one, from inside
to outside, as we do in real life.

8 Conclusion

Through empirical studies, we have succeeded in simulating the
fastening process of a band-shaped cloth that is twisted in 3D space.
Since existing techniques do not suffice in such a simulation that in-
volves heavy touches among deformable objects, we have proposed
three remedial but effective solutions:

� The pre-step fastening force, not just pulling the both ends of
a ribbon, accelerates the speed and enables smooth movement
in the simulation, but is left for further study together with the
future direction as described in the previous section.

� The post-step smoothing itself is mandatory for stability in
such a simulation as fastening a ribbon. We have shown that a
fine-grained low-path filtering technique works with low cost.

� The post-step penetration removal is the core part. It enables
us to skip the multiple collision handling in the physical cal-
culation phase. Taking ribbon edge collision into account is
the key to the fastening problem.

Our achievement is a good starting point to develop a useful soft-
ware in the future that enables more complicated and decorative
knotting. Such a software will be useful for those who would like
to design or to learn how to tie cravats, how to bind sashes for dress-
ing Kimono, etc.

9 References

[1] Mitsuyuki Ochiai, Shuji Yamada and Emiko Toyoda, Com-
puter Aided KnotTheory, Makino Shoten (1996).

[2] Pascal Volino and Nadia Magnenat-Thalmann, Virtual Cloth-
ing Theory and Practice, Springer Verlag (1998)

[3] Edited by Donald H. House and David E. Breen, Cloth Mod-

– 166–

���������
	��

Vol.4 No.4 pp.159 – 167

eling and Animation, A K Peters, Ltd. (2000)

[4] Kunii, Gotohda, Modeling and Animation of Garment Wrin-
kle Formation Processes, Computer Animation proceedings,
Springer-Verlag, pp 131-146, 1990

[5] Chiyi Cheng, Ying-Qing Xu, Jiaoying Shi, and Heung-Yeung
Shum: Physically Based Real-time Animation of Hangings,
CGI 2001.

[6] Pascal Volino, Nadia Magneat-Thalman: Geometirc Wrinkles
on Animated Surfaces, WSSG proceedings, 1999

[7] Sunil Hadap, Endre Bangerter, Pascal Volino, and Na-
dia magnenat-Thalman: Animating Wrinkles with Clothes,
pp.175-182 Proceedings of the conference on Visualization
’99: (1999)

[8] Roberto Bigliani and Jeffrey W. Eischen, Collision Detection
in Cloth Simulation, In Chapter 8 of Edited by Donald H.
House and David E. Breen, Cloth Modeling and Animation,
A K Peters, Ltd. (2000)

[9] Mathieu Desbrun, Mark Meyer, and Alan H. Bar, Interactive
Animation of Cloth-like Objects for Virtual Reality, In Chapter
9 of Edited by Donald H. House and David E. Breen: Cloth
Modeling and Animation, A K Peters, Ltd. (2000)

[10] Robert Bridson, Ronald Fedkiw, and John Anderson, Robust
Treatment of Collisions, Contact and Friction for Cloth Ani-
mation, SIGRAPH 2002, ACM TOG 21, pp.594-603 (2002)

[11] D STORM Inc., LightWave Plug-in Server Development,
http://www.dstorm.co.jp

[12] D STORM Inc., How to Calculate Catmall-Rom Spline,
http://www.dstorm.co.jp

[13] Kevin Kaiser, 3 D Collision Detection, In Section 4.5 of
Edited by Mark DeLoura, Game Programming Gems, Born
Digital Inc., (2000)

– 167–

