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Abstract

Traditional archaeological excavations often record only limited details of artifacts and sites, making post-

excavation analysis difficult. A novel approach, consistent 3D excavation, records every detail of the excavation

process by scanning both artifacts and the excavation site to create 3D models. However, the current method

of registering the artifact and site models is entirely manual operation, requiring significant labor and time, and

the result depends heavily on the operator’s skill. This paper proposes a method to automate the registration

of 3D point clouds from an archaeological trench investigation site with individual artifacts (stones) in a virtual

space. The method integrates histogram-based color segmentation and a region-growing algorithm to extract

the topside of stones from the trench point cloud. The segmented stone points are then registered with the

complete stone point cloud, using initial alignments to refine the Iterative Closest Point (ICP) results, creating

a virtual representation of the ruin. To evaluate the effectiveness of the proposed method, experiments were

conducted on two different trench datasets. The results show that the method achieves high segmentation and

registration accuracy, while significantly reducing manual effort and improving efficiency.
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1 Introduction

Archaeological excavation is fundamental for un-
covering historical artifacts and understanding
ancient cultures. Traditional excavation meth-
ods involve systematic digging and recording of
artifact positions and contexts. Archaeologists
have traditionally used manual techniques to doc-
ument excavation sites. The conventional ap-
proach has often involved plane table surveys [1]
in the past. More recently, commercial products
like Total Station [2] have been used to record
the xyz coordinates of each artifact more quickly.
However, these methods lack the reproducibility
needed for precise ruin documentation.

To address these limitations, a novel approach
known as “Consistent 3D excavation” [3] has been
introduced, which involves 3D scanning of exca-
vation sites and each artifact, allowing for the cre-
ation of detailed 3D models. By registering these
artifact models into the 3D model of the entire
archaeological trench investigation site, archaeol-
ogists can achieve a more accurate and thorough
analysis of the excavation data. Manual registra-
tion between the point cloud of the excavation
site and the point cloud of the excavated artifact
is necessary to ensure reproducibility.

Manual registration process is time-consuming
and highly dependent on the skill and judgment
of the operator, leading to inconsistencies and po-
tential inaccuracies. Therefore, developing auto-
mated techniques for registering 3D artifact mod-
els with excavation site model is required. Au-
tomation will not only smooth the process but
also ensure consistent and accurate integration of
3D point clouds, regardless of the operator.

This paper proposes a method to automate
the registration of 3D point clouds obtained from
archaeological trench investigations, focusing on
segmentation and initial alignment. By imple-
menting these automated techniques, we aim to
enhance the efficiency and accuracy of consis-
tent 3D excavation, making it a more practi-
cal and effective approach for archaeological re-
search. Based on our dataset, hereinafter arti-
facts are referred to as ‘stones’ and the excavation
site is referred to as a ‘trench’.

2 Related works

2.1 Point cloud segmentation

Segmentation of 3D point clouds involves assign-
ing the same label to points that share common
characteristics. In general, there are five types
of segmentation: edge-based, region-growing, hy-
brid, model-fitting, and machine learning [4][5].

Edge-based segmentation algorithms identify
edges by detecting abrupt changes in normal vec-
tors or point curvatures. The detected edge
points are connected and the entire set is divided
into independent multiple-point sets for segmen-
tation. While edge-based methods are effective
for point clouds with distinct edges, they often
struggle with noisy data and smooth surfaces.

Region-growing methods classify nearby points
with similar attributes using neighborhood infor-
mation. This approach starts with a small seed
region and expands by incorporating neighboring
points that meet specific criteria, such as similar
normal vectors, curvatures, or geometric features.
Wang et al. [6] combined color information with
normal angles for region-growing, while Kang et
al. [7] used Gaussian curvature and normal an-
gle to adjust thresholds. Zhen et al. [8] intro-
duced octree-based voxelization into a traditional
region-growing method and used color features
for fine segmentation. These methods are more
accurate than edge-based algorithms and are ben-
eficial for segmenting smooth surfaces. However,
region-growing methods can be sensitive to noise,
resulting in over-segmentation or segmentation
holes.

Hybrid segmentation methods combine two or
more techniques to exploit the strengths of each
method while bypassing their weaknesses.

Model-fitting approaches divide point clouds
into predefined geometric shapes such as cylin-
ders, spheres, cones, and planes. RANSAC is a
widely used algorithm in this category. Model-
based methods are effective for detecting and fit-
ting regular geometric shapes but may struggle
with complex or irregular shapes.

Machine learning segmentation uses algorithms
that learn from data to segment point clouds.
Common methods include hierarchical clustering,
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K-means, and mean shift. These approaches of-
ten require substantial labeled training data and
significant computation time.

Our dataset has smooth surfaces and does
not conform to simple geometric shapes, making
edge-based and model-fitting methods less suit-
able. Machine learning and hybrid segmentation
methods are complex to implement and require
additional time. Therefore, this paper utilizes
a region-growing algorithm, which is suitable for
smooth surfaces and colored point clouds.

2.2 Matching algorithm

Various methods, including deep learning, have
been proposed for object recognition using 3D
point clouds [9]. PointNet++ [10], PointRCNN
[11], and PV-RCNN [12] utilize neural networks
to extract features, enabling shape recognition for
objects with distinct features. However, these
methods are not reported for objects like stone
tools, which lack prominent features [13]. Ad-
ditionally, for matching 3D point clouds, Chang
et al. [14] introduced a similarity measure based
on the central axis of 3D shapes, while Liu et al.
[15] developed a method for classifying 3D shapes
from various angles. [14] and [15] are effective for
classifying shapes with clear geometric features
but face challenges with minimal distinct features
data, such as stone tools [16].

2.3 Global alignment methods

Global alignment techniques for point clouds use
features such as SHOT [17], FPFH [18], and SU-
PER 4PCS [19]. SHOT uses histograms of nor-
mal vectors within a spherical region for match-
ing. FPFH creates histograms based on angular
relationships of k-nearest neighbors’ normal vec-
tors. SUPER 4PCS uses sets of four coplanar
points for efficient matching. While these meth-
ods require high overlap for effective matching,
the dataset used in this paper has a low overlap
ratio.

On the other hand, the Iterative Closest Point
(ICP) algorithm is widely used for 3D shape reg-
istration. Furukawa et al. [20] applied ICP to
combine incomplete laser point clouds with the
points created by photogrammetry. Takahashi et

al. [16] used ICP for partial matching to align the
point clouds of stone tools with their surfaces.
Principal Component Analysis (PCA) was used
for initial alignment by aligning the local axes
of the point clouds to provide a suitable starting
point for ICP. Similarly, Tian et al. [21] devel-
oped a PCA-ICP method, where PCA provides
coarse registration followed by ICP for fine align-
ment.

Therefore, this paper proposes a method for es-
timating initial positions through predefined pat-
terns to rotate the segmented point clouds around
the excavated stone.

3 Proposed Method

This paper proposes a method for registering the
stone and trench point clouds, which involves two
steps: 1○ Segmentation, segmenting the corre-
sponding part of the stone from the trench and
2○ Initial alignment, aligning the stone and seg-
mented point set using PCA and ICP algorithm.

3.1 Segmentation

3.1.1 Color segmentation

Since the original point cloud measured from the
trench area is very large, performing segmenta-
tion directly on this dataset has a high calcula-
tion cost. To address this issue and efficiently
distinguish the stones from the surrounding envi-
ronment, the RGB color information of the point
cloud is utilized for rough segmentation.

This paper assumes that the trench point cloud
has distinct color differences between the stone
and soil parts, as shown in Figure 1 (a). Since
region-growing segmentation based on distance
and normal vector angles cannot effectively dis-
tinguish between stone and soil, only stones with
colors distinguishable from soil, such as white-
colored stones, are considered.

A grayscale histogram is utilized to distinguish
the stones from the soil. First, the grayscale val-
ues are computed from RGB using the NTSC for-
mula [22] in Equation (1).

I = 0.299 · r + 0.587 · g + 0.114 · b (1)
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(a) (b)

Figure 1: (a) Raw color data of Trench 1.
(b) Converted grayscale data.

where r, g, b represent the RGB color components
of a point and I is the calculated grayscale inten-
sity. For example, the color data of Trench 1 and
the resulting grayscale point cloud is shown in
Figure 1.

Figure 2 shows the grayscale intensity his-
togram of all points in Trench 1. The horizon-
tal axis represents the grayscale intensity (I),
while the vertical axis indicates the histogram val-
ues (H). The first maximum corresponds to the
ground colors (darker shades), while the second
maximum represents the stone colors (brighter
shades). Points with intensity values correspond-
ing to the beginning of the second maximum are
extracted using Equations (2) to (4).

Figure 2: The grayscale intensity histogram.

To segment points based on intensity, maxima
and minima in the grayscale histogram are iden-
tified first. A maximum is defined as a local max-
imum where the value is greater than its neigh-
boring bins within a defined range:

He > He−d and He > He+d, d ∈ [1, v] (2)

where He represents the histogram value at Ie,
and d ranges from 1 to v, the maximum allowable
range, to check the neighboring bins. Empirically,
v is set to 10.

After detecting maxima, a minimum is identi-
fied as the local minimum between two consecu-
tive maxima:

Imin = argmin
e

(He), a < e < b (3)

where a and b are the index of two adjacent max-
ima (Ha,Hb), and Imin is the intensity of mini-
mum (Hmin) between them.

Points satisfying the condition in Equation (4)
are extracted.

Ii ≥ Imin (4)

where Ii represents the intensity of a point. In
Figure 2, the histogram values selected for ex-
traction are colored in green.

The result of the color segmentation is shown
in Figure 3.

Figure 3: Color segmentation result.

3.1.2 Denoising

As mentioned in Section 2.1, the region-growing
algorithm is sensitive to noise, and from color seg-
mentation, some points from the ground are also
extracted as noise as shown in Figure 4 (a). To
remove these noise points, the Sparse Outlier Re-
moval method [23] is applied to determine the
noise by evaluating the distance between neigh-
boring points. Points that exceed a specified dis-
tance threshold, which is determined based on the
average distance and deviation of the point cloud,
are considered noise and are removed.

First, the average distance Di between each
point Pi and its neighboring points is calculated.

Di =

k∑
j=1

∥Pi −Pj∥

k
(5)

where k represents the number of neighboring
points. Then, the average distance of all points
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(a) (b)

Figure 4: (a) Part of color segmentation result.
(b) Denoising result.

D and the standard deviation σ are calculated as:

D =

n∑
i=1

Di

n
(6)

σ =

√√√√√ n∑
i=1

(Di −D)2

n
(7)

Here, n is the total number of points in the point
cloud. To identify and remove noise, points whose
distance Di is greater than the threshold D +
σ × ϵa is filtered out and ϵa is utilized to adjust
the threshold based on the standard deviation.
Figure 4 (b) shows the result of the denoising.

3.1.3 Region-growing algorithm

The region-growing algorithm segments the stone
by starting from a seed point and iteratively
detecting neighboring points that share similar
characteristics. The segmentation starts with an
unvisited seed point, which is assigned a unique
region label. To determine whether neighboring
points belong to the same region, the algorithm
considers two criteria:

1. Distance Threshold: The average distance
between the seed point and its nearest neigh-
bors is computed by Equation (5). The av-
erage distance of the seed point, Dseed, is
utilized as the threshold.

2. Surface Normal Angle Threshold: The angle
between the normal vectors of the seed point
and neighboring points, θseeda , is evaluated to
ensure smooth surface transitions.

The angle θij between normal vectors ni and nj

is calculated using:

θij = arccos

(
ni · nj

∥ni∥∥nj∥

)
(8)

Next, for each point Pi, an average angle θia is
computed across its k neighboring points:

θia =

k∑
j=1

θij

k
(9)

A point i is added to the region if it satisfies
both conditions of Equation (10) and Equation
(11).

Di ≤ Dseed (10)

where Di is the average distance of i-th point.

θia ≤ θseeda (11)

where θia is the average normal vector angle of the
i-th point.

Figure 5 (a) shows the results of region-growing
with regions in different colors.

3.1.4 Merging regions

After the region-growing algorithm, some regions
may be too small due to variations in the point
cloud density or minor noise as shown in black
circles in Figure 5 (a). To address this, a post-
processing step is applied to merge small regions
with their nearest neighboring region.

Regions below a specified threshold size, ϵb, are
identified and checked for neighboring regions.
The neighboring region is selected based on the
closest point belonging to a different region, and
the entire small region is merged into this target
region. If no valid neighboring region is found,
the small region is excluded from the segmenta-
tion process and marked with a distinct color.

The merging process iterates over the region
list until no further small regions remain. Addi-
tionally, a second merging pass ensures that any
remaining small regions are processed effectively.

After merging, the total number of segmented
regions is reduced, resulting in a more coher-
ent segmentation. The updated segmentation re-
sults are shown in Figure 5 (b), where the previ-
ously fragmented segments have been successfully
merged.
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(a) (b)

Figure 5: (a) Region-growing result.
(b) Merging result.

3.2 Initial alignment

Since the initial alignment of the point clouds
heavily affects the matching result of the ICP al-
gorithm [16], the point clouds are aligned through
the following steps.

Step 1: Shifting to the Global Origin

The centroids of both the stone and the seg-
mented trench point clouds are calculated. These
centroids are then shifted to the global origin
O(0, 0, 0).

Step 2: Aligning the Local Axes Using PCA

The local axes for both point clouds are cal-
culated using PCA [24]. The three vectors ob-
tained from PCA are assigned to the coordinate
axes based on their lengths: the longest vector
is assigned to the x-axis, the second longest to
the y-axis, and the shortest to the z-axis. The
segmented point set is then transformed to align
with the principal axes of the stone accordingly.

For open point clouds like the segmented points
from the trench investigating site, where the front
and back sides may not be distinguishable, the
direction of the z-axis derived from PCA can be
opposite to the normal vectors of the points. In
such cases, the z-axis is adjusted to align with the
normal vectors.

Step 3: Downsampling the Stone Point Cloud

To enhance the efficiency of the ICP algorithm,
the stone point cloud is downsampled to match
the density of the segmented points of the trench
investigating site.

Step 4: Bounding Box Translation

A bounding box around the stone is derived,
and the segmented points from the trench are
translated to align with the bounding box. The
centroid of the segmented points is shifted to align
with the centroid of the bounding box’s surface,
and the local axes of the segmented points are

Figure 6: Examples of bounding box translation.

rotated to align with the normal of the bounding
box surface. After z-axis aligns with the normal
of the bounding box surface, there are 4 possi-
ble rotations for the x and y axes including their
negations and 6 surfaces, resulting in 24 possible
rotations for this alignment.

In Figure 6, the black-colored point clouds
represent the stone, while the red-colored point
clouds represent the segmented points. The local
axes of the segmented points are depicted with
the x-axis in red, the y-axis in green, and the z-
axis in blue. The target surface for the alignment
is highlighted in bold. For instance, Translation
1 shows shifting the segmented points to the top
of the bounding box without rotation.

Step 5: Applying the ICP Algorithm

After each bounding box translation, the ICP
algorithm is applied to finalize the registration,
and the transformation with the lowest ICP score
is selected as the matching result. The ICP algo-
rithm performs alignment based on point pairs of
the point clouds. Sawada et al. [13] introduced
the evaluation value E, referred to as the ICP
score in this paper:

E = D2 × (1−R) (12)

where D is the average distance between point
pairs and R is the ratio of point pair numbers
and point numbers.

4 Experimental results

The implementation and experimentation of this
study were performed on a computer equipped
with a 12th Gen Intel Core i5-12400 processor,
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16.0 GB of RAM, and operating on Windows 11
Pro Education.

The trench and stone point clouds were ob-
tained from the Osato site located in Mishima,
Kagoshima, Japan [3]. Trench 1 point cloud,
shown in Figure 7 (a), contains 7,716,454 points
and includes 10 stones. Trench 2 point cloud in
Figure 8 (a), contains 3,596,498 points and has 15
stones. Both point clouds include color informa-
tion used for the segmentation process. However,
they do not include normal vectors.

In denoising, k is set to 30, based on the point
density, and ϵa is set to 0.05 as the minimum dis-
tance for the noise removal. To merge the regions
of the region-growing result, ϵb is set to 10,000.

Following the steps in Section 3.2, the results
of the initial alignment are summarized in Table
1 and Table 2, detailing the point count of the
stone and its segmented parts, the number of ICP
iterations, the ICP score, and the execution time
in seconds.

Table 1 presents results where the stone and
segmented point clouds were downsampled to
10,000 points, except for Stone No.671. This
downsampling significantly reduced execution
time, with all registrations completed in under
10 seconds.

From Table 2, the execution time is dependent
on the point count; with fewer points, the execu-
tion is faster. Stone No.557, 558, and 559, which
have the fewest points, required approximately
3 seconds. In contrast, stones with larger point
counts, such as Stone No.560 and 660, required
between 50 to 100 seconds.

Based on multiple experimental results, an ICP
score of E ≤ 1.5 is considered a successful regis-
tration. For Trench 1, all six stones were suc-
cessfully registered, verifying the effectiveness of
the proposed method. Compared to Trench 2,
Trench 1 had a higher point count and density,
which contributed to the success of all registra-
tions without failure.

For Trench 2, among the nine stones, seven
were successfully registered to the trench. How-
ever, Stone No.562 and 563 failed to register. Al-
though Stone No.563 had an ICP score of 1.4, it
still failed due to additional factors beyond the
ICP score. This issue occurs when the stone has

a similar color to the ground (No.563) or when
the stone is buried deep in the trench with only
a few parts recorded in the trench point cloud
(No.562). Nevertheless, as shown in Figure 8 (b)
and (c), the registration of the remaining stones
was successful.

Figure 7 (b) and Figure 8 (c) show the result of
our method, where the registered stones are cir-
cled in red. The white line represents the bound-
ary between the soil and the underground. As
seen in the figures, the point cloud of the stone
visible on the surface is aligned with the point
cloud of the stone after excavation.

5 Conclusion

In this paper, we proposed the automated reg-
istration of 3D point clouds obtained from ar-
chaeological trench investigations. A customized
region-growing algorithm utilizing average dis-
tance and normal vector angle was used for
segmentation. PCA-based transformation and
pattern-driven bounding box translation were ap-
plied before the ICP algorithm for refined align-
ment results. Based on the experimental results,
the practical use of the proposed method was ver-
ified using two types of datasets.

Future works include improving the region-
growing algorithm to better segment the stones
from the trench, considering multiple-colored or
ground-colored stones. Additionally, refining the
initial alignment is important to ensure effective-
ness for cases like Stone No.562 and 563.

This paper is an updated version of the one pre-
sented at NICOGRAPH2024 [25]. We sincerely
appreciate the NICOGRAPH 2024 program com-
mittee members for their valuable reviews and
suggestions on the submitted paper [25]. A part
of this work was supported by JSPS KAKENHI
Grant Number JP25K00537.
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