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Abstract
Conducting comprehensive excavations in the extensive areas surrounding ancient tumulus clusters can reveal the loca-
tions of undiscovered tumuli. However, such endeavors demand significant manpower, resources, and time. By preemp-
tively estimating the locations of these tumuli, we can avoid unnecessary excavations and improve efficiency. This study
aims to examine the correlation between the distribution of ancient tumuli and topographical features. Leveraging this
correlation, our goal is to forecast the likelihood of encountering ancient tumuli in various unexplored areas around the
Iwase Senzuka tumulus cluster. This paper proposes a novel method to analyze the topographic point cloud data. The
method involves superimposing archaeological markings onto the derived topographic map for annotation, cropping out
patches and combining them to predict the likelihood of tumulus presence. The generated 2D distribution heatmaps are
integrated and mapped to a color-coded point cloud for simultaneous observation of the important feature distribution
identified by the deep learning network and examination of the 3D topography.
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1 Introduction

The Wakayama Prefecture Kii-fudoki-no-oka Mu-
seum of Archaeology and Folklore was established
in 1971 with the aim of conserving and showcasing
the national special historic site, the Iwase Senzuka
Kofungun (Iwase Senzuka tumulus cluster) [1]. This
tumulus cluster is one of the largest clusters of tumu-
lus in Japan built from the 5th to the 7th centuries.
There are about 430 tumuli in the premises and about
700 tumuli in total in the entire area. The tumuli in
this cluster are characterized by their unique horizon-
tal stone chambers with stone shelves and beams. An-
other feature is that keyhole-shaped tumuli are com-
monly built along the ridge line at a maximum height
of 150 meters. These characteristics are likely to re-
sult in a distribution of construction sites that differs
from those in other parts of the world. Although
many tumuli have already been discovered, archae-
ologists believe that there is still a high likelihood of
numerous undiscovered ancient tumuli remaining in
this area. The park of Iwase Senzuka tumulus cluster
covers an area of approximately 67 hectares. How-
ever, conducting excavations in a systematic, area-
by-area manner would inevitably consume significant
manpower, resources, and time.

This study focuses on the problem of estimating
the locations of tumuli in advance to eliminate the
possibility of excavating them mistakenly and im-
prove the efficiency of the excavation process. Pre-
vious research has found that the distribution of tu-
muli in other places of the world is associated with
various topographic features and geographical vari-
ables [2, 3, 4]. For instance, statistical analysis has
demonstrated a correlation between the distribution
of archaeological sites in the desert area of south-
ern Morocco and various geo-environmental vari-
ables, including topographic elevation, slope, orien-
tation, and proximity to water sources [5]. The geo-
environmental criteria, such as the digital elevation
model (DEM), slope, hillshade, fertility, distance to
river, and distance to the palm grove, were used to
predict archaeological site locations in the desert area
of southwestern Algeria [6]. Six geo-environmental
factors of distance to rivers, distance to cropland,
slope, aspect, elevation, and terrain texture were used
to generate a archaeological predictive map for the
Bekaa valley in Lebanon [7]. However, acquiring the

geographical variables and making judgements based
on these variables requires a considerable amount of
manual operation and relies on experienced experts.

Different from the desert or valley area in the pre-
vious research, the tumuli in Iwase Senzuka tumulus
cluster are likely to have different distribution patterns
and relationships with topographic information. In-
stead of obtaining the geo-environmental variables,
this paper proposes that the correlation between the
distribution of ancient tumuli and the topographical
features extracted from the map image can be used to
predict the likelihood of the presence of ancient tu-
muli in each potential location within the unexplored
areas of Iwase Senzuka tumulus cluster. Before em-
barking on excavations, the available information for
predicting the presence of ancient tumuli at a partic-
ular site is severely limited. Specifically, ancient tu-
muli are buried beneath the ground, often covered by
vegetation above. Even when excluding the influence
of noise caused by vegetation, the present observable
topographic features may differ from those at the time
of the tumulus construction due to gradual changes in
the landscape over time. For instance, prominent fea-
tures of the terrain at the time of construction, such
as bulges or other landmarks, might have served as
direct indicators of tumuli placement. However, over
the years, these features may become less distinct or
even completely disappear. In contrast, the relative
positions of valleys, ridges, or hilltops are likely fac-
tors considered during tumulus construction, which
may still be helpful for prediction. Therefore, this
paper tries to extract such reliable topographic fea-
tures from the surrounding area of three types of to-
pographic maps for tumuli estimation.

2 Related work

In recent years, the use of machine learning meth-
ods has yielded promising results by automating the
feature extraction and category classification process
for generating predictive archaeological models [8,
9, 10]. Orengo et al. [11] demonstrated the poten-
tial of machine learning-based classification of multi-
sensor, multi-temporal satellite data for the remote
detection and mapping of archaeological mounded
settlements in arid environments. The multi-sensor,
multi-temporal satellite data could serve as a bottle-
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neck for other archaeological predictive models ap-
plied in different places. Trier et al. [12] applied
the deep neural networks to airborne laser scanning
data for semi-automatic mapping of archaeological
topography. Besides, the detection framework of
YOLOv3 has been adopted to detect archaeological
tumuli in North-Western Iberia [13]. These applica-
tions of deep learning methods focus on extracting the
topographic features from LiDAR data. Generally,
massive training images are needed to produce sig-
nificant results. The characteristic tumular shapes in
one place may also differ from those in other places,
which also makes the collection of tumuli data diffi-
cult and the existing methods cannot directly applied
to our task. However, the abovementioned methods
represent only a small fraction of the broader field of
machine learning research. Specifically, in the task of
predicting archaeological tumuli, machine learning is
often employed as a tool for processing and analyz-
ing data that has already been measured and classified
manually. The content and format of the data deter-
mine the ease of learning, which is one reason why
there is relatively scant literature on using machine
learning to predict mound locations.

On the other hand, the mainstream research about
deep learning has achieved the state-of-the-art results
in the task of image classification and object detec-
tion. However, the majority of literature on image
classification and object detection focuses on dis-
tinctly different category labels, such as cats versus
dogs [14, 15, 16], or pedestrians versus cars [17, 18,
19], which can also be distinguished by human ob-
servation. The training process can be regarded as
updating the numerical feature values at every po-
sition within the network structure through numer-
ous images and label data, ultimately using activa-
tion functions to establish a direct correspondence be-
tween the image data and labels. The result effec-
tively emulates the human ability to distinguish vi-
sually. As the number of training and testing im-
ages grows with updates to benchmark challenges,
the models become increasingly capable of handling
image noise and varied shooting conditions (angles,
lighting, etc.), sometimes even surpassing human vi-
sual distinguishing abilities under extremely chal-
lenging conditions [20, 21, 22]. However, the initial
phase of defining labels still focuses on categories that
are visually distinguishable. The subject of this paper

is different. Even with human eyes, it is difficult to
discern the locations of tumuli on topographic maps
compared to areas without tumuli. Archaeological ex-
perts can predict the likely presence of tumuli based
on the terrain distribution that matches ancient crite-
ria for placing tumuli, guided by their prior experi-
ence. In fact, the placement of tumuli often follows
patterns that vary by region, culture, and tradition,
making it challenging for those without sufficient ar-
chaeological knowledge or experience to differentiate
between locations with and without tumuli. The goal
of this study is to explore this issue, which has rarely
been considered within the realms of image classifi-
cation or object detection. It aims to use deep learning
techniques to learn the distribution patterns of tumuli,
thereby predicting the likelihood of tumuli at a given
location.

(a) (b) (c)

Figure 1: The examples of 3 topographic maps cover-
ing a small part of the Maeyama-A region.
(a) contour line map. (b) shaded relief im-
age. (c) slope map.

Our previous work [23] also utilized the topo-
graphic maps of Maeyama-A region (a part of the
Iwase Senzuka tumulus cluster) as the research sub-
ject to estimate the locations of tumuli. This region
includes 182 tumuli that have already been discov-
ered, while other areas may still conceal undiscov-
ered tumuli. The objective is to extract image features
from the topographic maps around discovered tumuli
that can distinguish areas with and without tumulus.
These features are then used to predict the distribu-
tion of undiscovered tumuli in the remaining areas.
The acquired topographic maps include a slope map,
a contour line map, and a shaded relief image. An ex-
ample of the topographic map covering a small part
of the Maeyama-A region is illustrated in Fig. 1. The
rectangles indicate the position of discovered tumuli.
It is challenging to discern patterns in the distribution
of tumuli based solely on visual observation of im-
ages. Because some tumuli in the topographical maps
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are distinctly different from their surroundings, while
others do not show any noticeable differences, mak-
ing it difficult to predict the locations of undiscov-
ered tombs using only the human eye. Specifically,
the contour line map indicates the vertical distance
in ground elevation with the contour interval between
contour lines. In Fig. 1(a), some large discovered
tumuli exhibit circular contour lines within the blue
boxes, while others do not. The shaded relief image
shows the shape of the terrain realistically by show-
ing how the three-dimensional surface would be illu-
minated from a point light source. In Fig. 1(b), some
discovered tumuli exhibit clear topographical eleva-
tions and depressions, while others are characterized
by subtle terrain variations that blend seamlessly with
the surrounding landscape. The slope map shows the
steep or gentle level of a slope at any given position.
In Fig. 1(c), some discovered tumuli reveal areas of
red surrounded by green and yellow, while others do
not show obvious differences from the surroundings.
Each of the three types of topographic maps was veri-
fied to contain valuable information for predicting the
locations of tumuli. However, the previous work an-
notated the surrounding region around discovered tu-
muli as non-tumulus samples, where some incorrect
labels might have been mixed in. Besides, the in-
put images of deep learning networks after processing
had different scales in the previous works. This paper
revises the annotations of tumulus and non-tumulus
samples based on the recommendations of archaeo-
logical experts, and organizes them as three chan-
nels of the input image with the same scale to train
the deep learning network. This paper also improved
the visualization of prediction result, allowing for a
clear comparison between the features identified by
the deep learning network and those recognized by
archaeological experts.

3 Method

As shown in Fig. 2, the main process of the proposed
method is as follows. First, three different types of
topographic maps are generated from 3D point cloud
data of Maeyama-A region. Using the marked distri-
bution map of discovered ancient tumuli, the corre-
sponding ground truth annotations are made for the
three topographic maps. These annotated regions are

then individually segmented into patches. The three
topographic map patches corresponding to the same
location are combined as three channels of a single
image, which serves as the input for the deep learning
network. The transfer learning technique is used to
retrain a pre-trained network model to distinguish be-
tween “non-tumulus” and “tumulus” categories. Af-
ter training, for any given patch image, the network
firstly performs a forward propagation. If the confi-
dence score for the “tumulus” category is higher than
that for the “non-tumulus” category, the confidence
score for the “tumulus” category is backpropagated
through the last convolutional layer. The resulting
gradient is then linearly combined with the feature
maps from the last convolutional layer to produce a
heatmap of the input patch image. This heatmap high-
lights the features that contributed most to the net-
work’s classification of the patch as a “tumulus”. Fi-
nally, the heatmaps of patches from different locations
are combined into a whole 2D heatmap that describes
the importance of various features. To compare the
features identified by the deep learning network with
those used by human archaeologists, the color of 2D
heatmap is mapped onto the 3D point cloud. The
color-coded annotations on the 3D point cloud can be
utilized in the following scenarios:

(1) By comparing the topographic and 3D heatmap
distribution of known tumulus areas, archaeologists
can simultaneously observe the important feature dis-
tribution identified by the deep learning network
while examining the 3D topography. This allows
them to verify whether the features they focus on
when identifying tumuli coincide with those identi-
fied by the network. The common features can then
be described in human-understandable language, im-
proving the ability to communicate this knowledge to
others and aiding in the training of future archaeolo-
gists.

(2) Archaeology novices can learn and master the
knowledge needed for tumulus identification by com-
bining the color-coded 3D point cloud, topographic
data, and the feature descriptions provided by expe-
rienced archaeologists. Additionally, the results from
the deep learning network can serve as a reference to
assist beginners in their tumulus identification efforts.

(3) The automated patch-by-patch identification
process serves as an initial automated screening for
future tumulus excavation work. Areas with higher
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Figure 2: The processing flow of the proposed method.

heatmap values are identified as more likely to con-
tain tumuli, allowing archaeologists to prioritize these
areas for further excavation, thus saving them from
manually inspecting every location.

3.1 Data Processing

The original topographic maps do not contain any
location information of the discovered tumuli. To
obtain the location annotation of discovered tumuli,
the coordinate and size of each discovered tumuli on
the image should be manually annotated to make the
training data. A map with all the discovered tumuli
marked in circles by archeologists is used to gener-
ate the the ground-truth data. However, as shown in
Fig. 3(a), this tumuli-marked map only covers a rect-
angular section of the Maeyama-A region, and its dis-
tance scale is different with those of the original topo-
graphic maps, as shown in Fig. 3(b). To transfer the
coordinate and size of each discovered tumuli from
the tumuli-marked map to the original topographic
map, the image of the tumuli-marked map is resized
to make them have consistent distance scales. Specif-
ically, the image file of tumuli-marked map has a
resolution of 2480 × 3507 and its distance scale in-
dicates that 50 meters is represented by 325 pixels.
The three original topographic maps shares the same
image size of 11616 × 6576 and the same distance
scale where 350 meters is represented by 2854 pix-
els. The tumuli-marked map is enlarged to 125.45%
(2854 ÷ 325 × 50 ÷ 350) of its original size to obtain

the consistent distance scale.

(a) (b)

350m

50m

Figure 3: The scale information used for the align-
ment of maps to obtain ground-truth posi-
tions of discovered tumuli. (a) marked map
of discovered tumuli. (b) the slope map.

Then, as shown in Fig. 4, the marked map is made
semi-transparent and placed over the original topo-
graphic maps to make them overlap. Places with dis-
tinct terrain changes can be used to verify whether
two images are perfectly aligned. After adjusting the
relative positions, the map on the top can be changed
to be different transparency to visually confirm the ef-
fects of overlap. The overlapping states are exported
as images with the same resolution as the original to-
pographic maps. Each circular region on these images
is manually annotated with a bounding rectangle. The
coordinate and size of the rectangle also correspond
to the discovered tumuli on the original topographic
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maps, and is used to cropped out the patch image only
containing a single tumulus from the original topo-
graphic maps. The patch images of three topographic
maps can be used independently or combined as input
images for deep learning networks, for which the ex-
perimental result comparison will be discussed in the
next section.

(b)

Marked map

3 topographic maps Overlap for annotation
Crop out patches

Combining patches

Figure 4: The image processing steps.

Although the coordinate and size of discovered tu-
muli patch images can be annotated according to the
marking of archeologists, the non-tumulus region is
not marked similarly. According to the experience
of tumuli discovery by archeologists, it is highly un-
likely that tumuli would be found in valleys or on
slopes. It is also reasonable to choose the empty areas
along the ridges as non-tumulus samples. Besides,
the regions surrounding the cluster of discovered tu-
muli have higher possibility to be checked while dis-
covering the tumuli. Thus, the surrounding regions
has higher possibility to be non-tumuli than regions
far away from discovered tumuli. Regions manually
found following these rules are annotated as the posi-
tion of non-tumulus. Considering the discovered tu-
muli have different sizes according to the actual size
of the tumuli, the maximum size of all discovered tu-
muli regions is chosen for non-tumuli patches, and
the center of the non-tumuli patch is preserved. To
this end, the position and size of both tumulus and
non-tumulus regions are defined and manually anno-
tated. The annotation is utilized to crop the patch im-
age from the three topographic maps. The patch im-
ages containing the discovered tumuli are regarded as
the class of tumulus samples, and rectangular regions

labelled as “non-tumulus” are considered as the other
class of non-tumuli samples. As shown in Fig. 5, tu-
mulus samples (representing discovered tumuli) are
shown by blue rectangles, while non-tumulus sam-
ples are shown in red. These samples can be cropped
out separately from three distinct topographic maps
by utilizing the locations of the blue and red rectan-
gles.

Figure 5: The ground-truth annotation for tumulus
(blue rectangles) and non-tumulus (red rect-
angles) on the slope map.

3.2 Patch Image Prediction

The annotated data containing tumulus and non-
tumulus samples can be divided into three subsets for
training, validation, and testing. Deep learning archi-
tectures is trained with the training subset, simultane-
ously validated on the validation subset, and tested on
the testing subset after training to verify the results.
This data division strategy helps in selecting the op-
timal experimental parameter settings by comparing
the experimental results in terms of the same evalu-
ation metrics. Subsequently, the selected parameter
settings are applied to train once again on all anno-
tated data. At this point, all data is used for training
without division. The generated model serves as the
final prediction model. Since the aim of this study is
to predict the likelihood of the existence of tumulus
in the remaining locations based on the topographic

– 3:6 –



The Journal of the Society for Art and Science, Vol. 24, No. 2, pp. 3:1 – 3:16 (2025)

maps of already discovered locations, the final predic-
tion model, trained with the selected optimal parame-
ter settings, can be employed to examine the remain-
ing locations. The confidence score obtained in each
location can be outputted as the likelihood of tumulus
existence, thus completing the overall prediction for
the area.

Regarding the parameters that need to be selected,
the first consideration is the content of input images.
The three types of topographic maps may contain
overlapping redundant information or exhibit unique
feature representations due to different expression
forms. To determine which topographic map of the
three yields the best performance, the effectiveness
of using three different topographic maps individu-
ally and in combination as input images can be com-
pared. The optimal choice of input image is selected
for further experiments. Besides, the choice of dif-
ferent deep learning models can also be optimized by
evaluating the result on the same dataset.

For comparison, the pre-trained CNN models of
a shallow-layer network, i.e. SqueezeNet [24], and
three enhanced network models with deeper layers
and more complex structures, i.e. ResNet50 [25], Ef-
ficientNet [26] and Inception-ResNet-v2 [27] are used
to evaluate the performance of classifying each patch
image into two classes of tumulus and non-tumulus to
validate the distinguishing ability of the deep learning
network architecture. An optimal model is selected
according to the evaluation result for further distribu-
tion prediction. To make the pre-trained models fit
the tumulus patch identification task, the input layer
and the last three layers of them needs to be modi-
fied. For instance, ResNet50 is 50 layers deep and
trained on more than a million images from the Im-
ageNet database. The pre-trained model can classify
images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals. As a result, the
network has learned rich feature representations for
a wide range of images. The network has an image
input size of 224 × 224 × 3. To make the tumulus
image fit the size of input layer, all input images are
resized to the same size as its input layer. Besides,
the last three layers, i.e., a fully connected layer, a
softmax layer, and a classification layer, are replaced
by new layers that fit the tumuli classification task.
In other words, the early layers are reused for image
feature extraction. By freezing the parameters in the

early feature extraction layers, the training process
converges much faster than training a network with
randomly initialized parameters.

3.3 Heatmap for Each Patch

The output layer of the deep learning network is set
to a vector with two elements, {s0, s1}, representing
the confidence that the input patch image belongs to
the “non-tumulus” and “tumulus” categories, respec-
tively. The larger the value of confidence s1, the
higher the probability that the input patch image be-
longs to the “tumulus” category. However, the area
corresponding to the patch image still occupies a sig-
nificant region in the original topographic map. We
are more interested in knowing which specific fea-
tures within this area contributed to the final deci-
sion of classifying it as a tumulus. Therefore, we
seek methods to visualize feature importance, specif-
ically Gradient-weighted Class Activation Mapping
(Grad-CAM) [28]. Grad-CAM uses the gradient in-
formation flowing into the last convolutional layer of
the CNN to assign importance values to each neuron
for a particular decision of interest. In this context,
we are only concerned with the Grad-CAM for the
tumulus category. This means that when calculat-
ing the gradient information, we only take the par-
tial derivatives of confidence s1 with respect to the
last convolutional layer. Let Ak represent the k-th fea-
ture map obtained by the last convolutional layer after
training. As shown in the backpropagation gradients
g1, g2, g3 and g4 in Fig. 2(b), the backpropagation gra-
dient gk corresponding to the k-th feature map can be
expressed as follows,

gk =
1
z

∑
i

∑
j

∂s1

∂Ak
i, j

, (1)

where z is the number of elements in the feature map,
i and j are the iterator for each elements of the feature
map. By performing a linear combination of each gra-
dient and its corresponding feature map, the output
heatmap Ypq of Grad-CAM can be obtained for the
patch centered at (p, q), as shown below,

Yp,q =
∑

k

gk ∗
Ak

p,q + |Ak
p,q|

2
, (2)

where the negative values of Ak
i j are ignored, and only

the positive values are retained. The actual examples
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of calculated Y are shown in the “heatmap of each
patch” in Fig. 2(c), where the heatmaps are overlaid
on the original patch images to achieve better visual-
ization.

3.4 2D Heatmap Integration

Each input patch image of the deep learning net-
work is extracted from a large, complete topographic
map. Although each patch image can generate its own
heatmap, a major challenge remains: how to organize
these numerous heatmaps to provide a complete vi-
sual representation of the topographic map. To ad-
dress this, we introduce a weighted Grad-CAM calcu-
lation method. This method adjusts the relative value
of different heatmaps using the confidence value of
s1 obtained from each patch image as the weight, as
shown below,

Y
′
p,q = s1 ∗ Yp,q

= s1
∑

k

Ak
p,q + |Ak

p,q|
2z

∑
i

∑
j

∂s1

∂Ak
i, j

 (3)

By iterating over the values of p and q in Y
′
p,q, we

can obtain a heatmap of the adjusted important feature
distribution for each patch image. In this way, the fol-
lowing two issues can be addressed. Firstly, compara-
bility between patches: the Yp,q in Grad-CAM assigns
values between 0 and 1 to represent the importance of
features learned during the training process for each
patch. When integrating the heatmaps of different re-
gions into a global heatmap (with the same dimen-
sions as the topographic map), it is necessary to ac-
count not only for the importance of features but also
for the confidence score of the region being classi-
fied as the tumulus category. To achieve this, we used
the confidence score s1 for the tumulus category as
the weighting factor. The weighted values were then
used to create the global heatmap. Secondly, over-
lap between patches: If adjacent patches do not have
overlapping areas, the boundary regions are excluded
from being the focus of any patch. To address this,
we ensured that adjacent patches had overlapping re-
gions. In the overlapping areas, the same pixel posi-
tion may be estimated multiple times in the heatmap.
To reconcile these multiple estimates, the values were
weighted using the tumulus confidence score. Among

the weighted estimates, the maximum value was se-
lected as the global estimate for that pixel. To achieve
this, we propose an algorithm to record the contri-
bution distribution of features at different locations
within each patch image for discrimination, as shown
in Algorithm. 1. This approach also addresses the is-
sue of fragmented heatmaps that occur when signif-
icant features appear at the edges of patches. In Al-
gorithm. 1, the first nested loop for i and j is used to
identify the maximum and minimum values along the
four edges of the patch centered at (p, q). The second
loop for i and j is responsible for assigning heatmap
values to the pixels in the global map that correspond
to all the pixels within the patch. The condition for as-
signing a heatmap value is that the difference between
the maximum and minimum values along the patch
edges must be below the threshold γ. If the differ-
ence exceeds γ, it indicates that the most significant
features are located on one of the patch edges, which
reduces precision compared to when the significant
features are located within the patch’s inner region.
Therefore, Algorithm. 1 excludes cases of imprecise
evaluation.

3.5 Colored Point Cloud

To address the issue of visualizing the integrated 2D
heatmap with the 3D terrain for comparison purposes,
we mapped each point in the 3D point cloud to its
corresponding position on the 2D heatmap. To es-
tablish a mapping between the 2D heatmap and the
3D point cloud, we first need to ensure that the XY
plane of the 3D point cloud aligns with the plane of
the 2D heatmap. Next, we need to ensure that the
point cloud rotates within the XY plane to match the
2D heatmap. In fact, since all three topographic maps
are derived from the original 3D LiDAR data, rota-
tions around the X, Y, or Z axes are not an issue. The
remaining challenge is the scale and translation be-
tween the XY coordinates of the point cloud and the
pixel positions on the 2D heatmap. Assume that any
given point (x, y, z) in the point cloud corresponds to
the pixel position (x

′
, y
′
) on the 2D heatmap. Then,

the scale and translation problem can be expressed by
x = a ∗ x

′
+ b and y = c ∗ y′ + d. This equation can

be solved for a, b, c, and d by manually annotating
two corresponding pairs of points. Alternatively, an-
notating more than two sets of points can yield a more
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Algorithm 1: Algorithm for 2D Heatmap Integration.

input : The resolution of topographic map w × h. The feature maps and confidence score s1 for
each patch. The half length of patch edge e.

output : The integrated 2D heatmap of H.
parameter: The threshold to determine whether important features are distributed along the boundary

γ

Initialize H ∈ 0w×h;
for p← e to w − e − 1 do

for q← e to h − e − 1 do
Initialize ymax ← 0, ymin ← +∞;
for i← 0 to 2e − 1 do

for j← 0 to 2e − 1 do
if i == 0 or i == 2e − 1 or j == 0 or j == 2e − 1 then // Find maximum &
minimum values along four edges of the patch

Calculate Y
′
p−e+i,q−e+ j by Eq. (3);

ymax ← max(ymax,Y
′
p−e+i,q−e+ j);

ymin ← min(ymin,Y
′
p−e+i,q−e+ j);

if ymax − ymin < γ then // If the most significant features are not located on
any one of the patch edges

for i← 0 to 2e − 1 do
for j← 0 to 2e − 1 do

Calculate Y
′
p,q by Eq. (3);

Hp,q ← max(Hp,q,Y
′
p,q) ;
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accurate correlation for linear regression. Finally, the
RGB values from (x

′
, y
′
) in the 2D heatmap are writ-

ten into the corresponding position of (x, y, z) within
the 3D point cloud.

4 Experimental Results

4.1 Experimental Setting

As shown in the top-left block of Fig. 2, the original
point cloud data contains 1,117,766 points. The res-
olution of the three topographic maps, i.e. the slope
map, the contour line map, and the shaded relief im-
age, which are derived from the point cloud data,
is 11616 × 6676. By aligning the marked discov-
ered tumuli map to them, there are 182 discovered
tumuli and 326 non-tumuli annotated and cropped
out to make 508 patch images for each of the three
topographic maps. The patch images are used as
ground truth data and labelled as tumulus or non-
tumulus. Then, the binary classification experiment
is conducted to verify whether the CNN architectures
could extract distinguishable features from the topo-
graphic maps. However, the optimal model should be
determined by performance evaluation. The evalua-
tion experiment uses the same data division method,
splitting all ground truth data by percentage: 70% for
training, 15% for validation, and 15% for testing. All
patch images are resized to the input layer size of the
pre-trained model. To avoid the patches being resized
to different scales, as shown in Fig. 5, the center co-
ordinates of the ground truth annotated rectangles are
used, and the largest side length of the discovered tu-
muli is applied as the uniform side length for each
patch. In the training phase, the initial learning rate
was set to 0.001. Stochastic gradient descent with
a momentum optimizer was used with a minibatch
size of 128, a weight decay factor of 0.0001, and mo-
mentum of 0.95. The maximum number of epochs
was set to 60. After training, the testing images are
considered as unknown images to verify whether the
predicted label matched the ground-truth label. The
matched images are considered correct prediction and
the mismatched images are incorrect prediction.

4.2 Evaluation Metrics

For comparison, the prediction result is estimated us-
ing the same evaluation metrics, i.e. accuracy, F-
score, precision, AUC, and prediction time. Accuracy
denotes the ratio of the number of correctly labeled
images over the total. In this case, it denotes the pro-
portion of correctly predicted image numbers to the
number of test images. F-score is the harmonic mean
of the precision and sensitivity, where the precision is
the number of correctly identified images divided by
the number of images identified as positives, and the
sensitivity is the number of correctly identified posi-
tives divided by the number of true positives. When
calculating the evaluation metrics of accuracy, preci-
sion, and F-score, a test image is judged as positive
when the confidence score is above 0.5. However,
by considering varying confidence scores as judging
thresholds, the receiver operating characteristic curve
(ROC) is drawn to evaluate the diagnostic ability of
this binary classifier system. This result indicates the
performance of a classification model at varying pre-
diction thresholds. The area under curve (AUC) de-
notes the area under the corresponding ROC curves.
The larger AUC value indicates a better ROC curve.
The metric of prediction time is the time consumed to
predict the entire testing dataset, measured in a desk-
top PC with a Core i7-13700k CPU, Geforce RTX
3080 GPU, and the 64GB memory.

4.3 Performance Evaluation

To compare the performance of different neural net-
work models, four different pre-trained models were
employed to train four classifiers for comparison. As
shown in Fig. 6, the loss values for the four mod-
els gradually converge during the training iterations.
However, the convergence value for SqueezeNet is
significantly higher than that of the other three mod-
els. This likely indicates that SqueezeNet is not as
effective at extracting features with the same discrim-
inative ability as the other models. The prediction re-
sults, as shown in Table. 1, indicate that EfficientNet-
b0 performed the best in the first three metrics of ac-
curacy, F-score, and precision, albeit with marginal
differences compared to the other three models. This
confirms that all models involved in the experiment
were capable of extracting sufficient features to distin-
guish between tumulus and non-tumulus categories,
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with EfficientNet-b0 slightly outperforming the oth-
ers. However, in terms of the metric of prediction
time, there was a gradual increase in the range of
SqueezeNet, ResNet-50, and Inception-ResNet-v2, as
the depth of the neural network models increased,
aligning with the expectation that deeper networks
require more computational resources for inference.
However, EfficientNet-b0 was proposed to adjust the
model scaling and balance network depth, width, and
resolution, which is proved effective in this experi-
ment and EfficientNet-b0 is only slightly slower than
SqueezeNet. By analyzing the AUC metric from
the ROC curves shown in Fig. 7, ResNet-50 slightly
outperformed the other models. EfficientNet-b0 and
Inception-ResNet-v2 produced similar results, while
SqueezeNet performed the worst. This indicates that
when using different threshold values to determine
the confidence score s1, ResNet-50 performs the best.
However, in Table. 1, where accuracy is compared,
EfficientNet-b0 is the best. This suggests that when
choosing the larger value between confidence scores
s0 and s1 as the prediction result, EfficientNet-b0 per-
forms the best.

Table 1: Evaluation of prediction results using the dif-
ferent pre-trained models. (Best results are
highlighted in bold)

Input image Depth Accuracy F−score Precision Prediction time (s)

SqueezeNet 18 0.7910 0.8466 0.8069 2.1977

ResNet-50 50 0.8916 0.9189 0.8914 11.0300

EfficientNet-b0 82 0.9474 0.9608 0.9245 3.3347

Inception-ResNet-v2 164 0.8877 0.9143 0.9045 21.0155

4.4 Visualization of Prediction Result

EfficientNet-b0 is selected as the optimal model to
predict patches and make the 2D heatmap integration
(as shown in Fig. 8) for the entire Maeyama-A region
according to Alg. 1. To address the request for quanti-
tative evaluation, the overlap ratio between the focus
areas of the heatmap of Fig. 8(a) and the regions of
known tumuli is calculated. In this process, a thresh-
old for determining overlaps emerged as an impor-
tant factor. Specifically, a heatmap value exceeding
a certain threshold is considered existence of a tumu-
lus. When the heatmap at the center coordinates of a
known tumulus is classified as existence of a tumulus,
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Figure 6: Comparison of the loss curves using differ-
ent pre-trained models for identification ex-
periment.

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
po

si
tiv

e 
ra

te

SqueezeNet
ResNet-50
EfficientNet-b0
Inception-ResNet-v2

Figure 7: Comparison of the ROC curves using dif-
ferent pre-trained models for identification
experiment.
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Figure 8: Result of 2D heatmap integration. (a) confi-
dence score of s1. (b) weighted Grad-CAM
in Eq. (3).
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it is defined as an overlap. To analyze this, the thresh-
old is incrementally increased from a minimum value
of 0 up to 1, calculating the overlap rate correspond-
ing to each threshold. This generates a curve showing
how the overlap rate changes with the threshold. As
shown in Fig. 9, when the threshold is set at 0.25, all
known tumuli are covered by the regions classified as
existence of a tumulus on the heatmap. However, this
setting likely includes a significant number of false
alarms. When the threshold is set at 0.5, 80.77% of
the known tumuli are covered by the regions classi-
fied as existence of a tumulus.

Figure 9: Overlap between the heatmap of confidence
score and the groundtruth of known tumuli.

By mapping the heatmap to the point cloud data,
we create a color-coded point cloud. This allows for
simultaneous observation of the important feature dis-
tribution identified by the deep learning network and
examination of the 3D topography. The color-coded
point cloud has over 1 million points and can be ex-
amined with point cloud processing software. By ro-
tating and dragging, users can observe the terrain of
a specific location from multiple perspectives and see
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Figure 10: The overlap rate between the heatmap and
the groundtruth changes with the thresh-
old.

the features that deep learning algorithms highlight as
important. Four screenshots of local parts in the point
cloud are shown in Fig. 11. Regions with high nu-
merical values, as shown by yellow areas in Fig. 11
can be translated into archaeological descriptive lan-
guage to facilitate the summary of these topographic
features.

Figure 11: Four screenshots of local parts in the color-
coded point cloud.

– 3:12 –



The Journal of the Society for Art and Science, Vol. 24, No. 2, pp. 3:1 – 3:16 (2025)

5 Conclusion

This paper proposes a novel approach to analyze the
topographic point cloud data by annotating three de-
rived topographic maps, cropping out patches and
merging them to predict the likelihood of tumulus
presence within each patch, and mapping the 2D
heatmaps back to a color-coded point cloud. In the fu-
ture, we plan to select some typical areas identified as
tumulus by deep learning networks and present them
to archaeologists for professional evaluation. These
areas can be prioritized for future excavation efforts,
thereby enhancing efficiency.

However, it remains uncertain whether the features
extracted by deep learning represent the topographic
features of the tumuli or the topographic features of
the surrounding terrain. On one hand, since this study
utilizes UAV-LiDAR data collected over the entire
Maeyama-A region, it is possible that when gener-
ating topographic maps on a large scale, the internal
shapes of the tumuli were overlooked. As a result, the
model may not be capturing their internal features and
is instead relying on surrounding topographic features
for prediction. On the other hand, when visualizing
the heatmap results for detected tumuli, we observe
that in some cases, the heatmap ’s focus aligns with
the center of the tumuli. However, a comprehensive
comparison and statistical analysis of all known tu-
muli have not yet been conducted in this study. For
undetected tumuli, there is currently no way to de-
termine whether the extracted features correspond to
the topographic features of the tumuli themselves or
those of the surrounding terrain. Therefore, as part
of future work, further investigation and comparisons
will be necessary to clarify whether deep learning is
primarily identifying the topographic features of the
tumuli or the topographic features of the surrounding
terrain.
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