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Abstract

This paper generalizes an impossible figure called a “Penrose triangle” to regular polygonal figures and proposes

a method for constructing real 3D objects from such figures. Two well-known tricks, namely the curved surface

trick and the discontinuity trick, have been used to construct 3D objects from impossible figures. However,

these tricks are very sensitive to viewpoint. The proposed method uses only planar faces and connects them

wherever they appear to be connected. The resulting objects are thus less sensitive to viewpoint in the sense

that the impression of impossibility does not disappear when the viewpoint slightly changes. Moreover, the

constructed objects have the same symmetry as that of the original figures, preserving their elegance.

1 Introduction

A class of images called “impossible figures” can
be imagined as 3D structures but seem impossi-
ble to physically exist [1, 2]. The Swedish graphic
artist Oscar Reutersvärd, who drew many beau-
tiful impossible figures around the middle of the
twentith century, is called the father of impos-
sible figures, even though their inventor is un-
known [3]. Various impossible figures have been
created, attracting the attention of both scientists
and artists.

Visual scientists study impossible figures to un-
derstand how the human brain perceives 3D ob-
jects. Gregory [4], for example, constructed a 3D
model of an impossible figure and discussed the
differences between seeing 3D objects and their
2D images. Huffman [5] and Clowes [6] charac-
terized the local features of figures to explain why
the brain can imagine the 3D structures despite
their impossibility.

Artists have used impossible figures in their
artwork. For example, the Dutch artist M. C.
Escher [7, 8] drew miraculous buildings using im-
possible figures. The Japanese artist Fukuda [9]

constructed real 3D structures from Escher’s im-
ages and thus developed 3D trick art.

One of the simplest impossible figures is the
“Penrose triangle” [10], in which three rectangu-
lar rods are connected at their ends, forming a
triangular ring. The rods are connected in such a
manner that the structure seems unrealizable as
a real 3D object. The Penrose triangle is one of
the most beautiful impossible figures because of
its simplicity and symmetry.

Although such figures are called “impossible”,
their 3D realization may be possible. Two tricks,
namely the curved surface trick and the disconti-
nuity trick, are widely used to construct 3D ob-
jects from impossible figures. The Penrose tri-
angle has been realized as a 3D object using
these tricks [4, 2, 11]. However, the resulting ob-
jects are very sensitive to viewpoint; even a slight
change in viewpoint ruins the trick and the sense
of impossibility disappears.

3D objects can be constructed from some im-
possible figures without using these two tricks
[12, 13]. In this method, a system of linear equa-
tions and inequalities is solved; if the system has
solutions, a 3D object associated with each of the
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solutions can be constructed. However, a general
application of this method results in an object
without symmetry even if the original figure is
highly symmetric.

In this paper, we generalize the Penrose trian-
gle to regular polygons and propose a method for
constructing the associated 3D objects without
using the curved surface trick or the discontinuity
trick. The resulting 3D objects are artistically el-
egant in the sense that they inherit the rotational
symmetry of the original impossible figures.

The rest of this paper is organized as follows.
Existing methods for realizing 3D objects from
the Penrose triangle are reviewed in Section 2.
A rectangular version of the Penrose triangle by
Draper and its 3D realization are presented in
Section 3. The Penrose triangle is generalized to
general regular polygons and a method for 3D
realization that inherits the original symmetry is
proposed in Section 4. The relation between our
method and a traditional graphical method [14,
15, 16] is discussed in Section 5, and concluding
remarks are given in Section 6.

2 Penrose Triangle and Two 3D
Realization Methods

Figure 1 shows two versions of the Penrose trian-
gle. Panel (a) shows a ring structure composed of
three rectangular rods connected at their termi-
nals. Panel (b) shows the same structure except
that the joint lines are also drawn along the lines
at which two rods are connected. These figures
give the impression that the rods are connected
at right angles and thus seem to be physically im-
possible because the accumulation of three right
angles cannot form a closed loop. Even if the rods
are connected by 60-degree inner angles, they
are twisted and thus the structure appears to be
physically impossible. These figures were popu-
larized by Lionel and Roger Penrose [10], after
whom they are named. Reutersvärd drew essen-
tially the same structure composed of many cubes
[3].

The Penrose triangle in Figure 1(a) can be con-
structed as a real 3D object using curved surfaces,
as shown in Figure 2, where (a) shows the object

(a) (b)
Figure 1: Penrose triangle drawn (a) without and (b)

with joint lines.

seen from a special viewpoint and (b) shows the
same object seen from a general angle. This trick
is called the curved surface trick. The faces of
the object are curved but the boundary appears
straight when seen from the special viewpoint,
giving the impression of a realized Penrose tri-
angle. This trick was used by computer scientist
Elber [11] and sculptor Hamaekers [2].

(a) (b)
Figure 2: Realization using curved surface trick.

Note that this trick can also be used to realize
the image in Figure 1(b). To do this, we cut the
object in Figure 2 into three parts and reconnect
them. However, this construction is less inter-
esting because any 3D object without joint lines
can be trivially converted to one with joint lines
by cutting along the joint lines and gluing along
them.

The other version of the Penrose triangle,
shown in Figure 1(b), can be realized as a 3D
object as shown in Figure 3, where (a) is a pho-
tograph taken from a special viewpoint and (b)
shows the same object from a general viewpoint.
As shown in Figure 3(b), the object is not closed;
there is a gap at the top corner along the view
direction associated with the special viewpoint.
This trick, used by Gregory [4] and Fukuda [9], is
called the discontinuity trick.

The discontinuity trick can also be used to
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(a) (b)
Figure 3: Realization using discontinuity trick.

realize the image in Figure 1(a). This figure
consists of three faces. We can construct these
three faces using planar boards independently
and place them in the space in such a way that
their boundary lines align when seen from a spe-
cial viewpoint. However, this realization is less of
creativity because any figure composed of closed
faces can be trivially constructed using this strat-
egy.

For the realizations in Figures 2 and 3, it is
difficult to place the object for exhibition. The
curved surface creates nonuniform shading, as
shown in Figure 2(a), based on which the trick
can be easily guessed even if the figure is viewed
from the correct viewpoint. The discontinuous
gaps can be seen when the viewpoint is even
slightly changed. Therefore, another method is
desirable for realizing 3D objects.

3 Draper’s Rectangle

One reason why the discontinuity trick easily
breaks down is that the hidden part in the im-
age is nearer to the viewer than the obstructing
part in the 3D object. Note that in the impossi-
ble figure in Figure 1(b), the top of the vertical
rod is hidden by the upper-right rod, but in the
actual object shown in Figure 3, the vertical rod
is nearer to the viewer than the upper-right rod.
Because of this, the discontinuity can be easily
seen. The trick would be less visible if the hid-
den part in the image were farther than the ob-
structing part in the actual 3D object. This can
be realized for the impossible figure proposed by
Draper [17], which is shown in Figure 4.

This figure is a generalization of the Penrose
triangle to a rectangle; four rectangular rods are
connected to form a closed ring, but they are con-

Figure 4: Draper’s rectangle.

nected in such a manner that the structure seems
to be physically impossible. For this figure, we
can construct a 3D object using the discontinuity
trick in such a way that the hidden part in the
image is farther than the hiding part in the actual
3D object. The realization with this property is
shown in Figure 5. The discontinuity is placed
at the upper-right corner, where the obstructing
rod is nearer than the hidden rod when we con-
nect the rods at other corners in a natural way.
As a result, the trick is slightly less recognizable.
Indeed, when the viewpoint is slightly changed,
the relation between the obstructing part and the
hidden part is not disturbed and thus the sense
of impossibility remains. However, this is a lucky
exception for this impossible figure.

(a) (b)
Figure 5: Realization of Draper’s rectangle using dis-

continuity trick.

4 Penrose Polygons and Their
Realization Using
Non-Rectangularity Trick

A natural generalization of the Penrose triangle
is to generalize the regular triangle to a regular
polygon. Two examples are shown in Figure 6,
where (a) is a rectangular generalization and (b)
is a pentagonal generalization. In both figures,
the configuration at the corners is the same as
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that of the Penrose triangle except for the angle
between the rods. This generalization is possible
for a regular n-gon for any n ≥ 3. The generalized
figure to a regular n-gon is denoted as a Penrose
n-gon.

(a) (b)
Figure 6: Penrose rectangle and pentagon.

We can construct a 3D object from the Penrose
rectangle using the discontinuity trick in the same
manner as that for the Penrose triangle. How-
ever, the resulting object has a discontinuous gap
where the obstructing part is farther than the hid-
den part from the viewer. Therefore, the trick is
very sensitive to viewpoint. We want a more sta-
ble realization that is more robust to changes in
viewpoint.

To this end, we employ a trick in which faces
that look planar are made using actually planar
faces and parts that look connected are actually
connected [12, 18]. This trick does not use curved
surfaces or discontinuities. Instead, it uses arbi-
trary angles between adjacent faces even if they
look orthogonal. This trick is called the non-
rectangularity trick. It is known that the human
brain prefers right angles when interpreting im-
ages as 3D objects [19]. If we use non-rectangular
angles to connect faces, the brain will try to inter-
pret them as right angles. This gives the impres-
sion that some figures are physically impossible
even though they are realizable as 3D structures.

The original method for constructing 3D ob-
jects using the non-rectangularity trick employs
a system of equations [12]. For Penrose n-gons,
we can construct 3D objects in a more intuitive
manner, as described below. As shown in Figure
7, we assign ordinal numbers to the rods, from
1 to n counterclockwise. We name the two vis-
ible faces as fi1 and fi2 and the five vertices as
vi1, · · · , vi5 for i = 1, · · ·n. We fix an xyz Carte-

sian coordinate system in such a way that the
image is on the xy plane, the origin is at the cen-
ter of the figure of the Penrose regular polygon,
the positive direction of the z axis is oriented to-
ward the front side of the paper, the viewpoint is
at P = (0, 0, d) for d > 0.

f11
f21

f31

fn1

v
11

v
13

v
14

v
12

v
15

v
21

v
23

v
24

v
22 v

25 vn1

vn3

vn4

vn2

vn5

f12
f22

f32
fn2

x

y

Figure 7: Face and vertex numbers assigned to Pen-
rose n-gon.

Our goal is to construct a 3D object whose cen-
tral projection onto the xy plane with respect to
the center of the projection at P matches the tar-
get figure. For this purpose, we assign the z co-
ordinates to the vertices as follows. First, for all
vertices vi3 (i = 1, · · · , n), we fix their z coordi-
nates as

z0 = 0 (1)

and for all vertices vi4 (i = 1, · · · , n), we fix their
z coordinates as

z1 = a, (2)

where a is a negative constant.
Then, the visible part of the object is deter-

mined uniquely by the following process. In what
follows, we read i+1 as 1 for i = n, and i−1 as n
for i = 1. Each vertex should be on the half line
starting at the viewpoint P and passing through
the associated point on the image. Hence, if we
give the z value of a vertex, it is fixed in the space
uniquely. Moreover, note that the faces fi2 and
fi+1,1 are connected and hence the vertices vi3
and vi4 are on both of the faces.

First, the three vertices vi3, vi4, and vi−1,4 are
fixed in space based on equations (1) and (2).
The face fi2, which contains these three vertices,
is thus also fixed in space. Then, the other two
vertices vi2 and vi−1,5 are fixed as the intersec-
tions between this face and the half lines starting
at P and passing through these vertices. Next,
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because the vertices vi2, vi−1,3, and vi−1,4 are al-
ready fixed in space, the face fi1 and thus vertex
vi1 can be determined in space. The visible struc-
ture is thus placed in the space. Note that vertex
vi5 (which is on face fi2) is farther than face fi−1,2

from the viewer because of equations (1) and (2).
Also note that the resulting 3D structure is sym-
metric with respect to a rotation by 2π/n around
the z axis.

Figure 8 shows a paper object that realizes
the Penrose triangle using the non-rectangularity
trick, where (a) shows the object from a special
viewpoint and (b) shows the same object from a
general viewpoint. As shown in the figure, all the
faces are planar and there is no discontinuity be-
tween parts that look connected in the original
impossible figure. Moreover, the structure is ro-
tationally symmetric, which is expected from the
original figure. This object is thus less sensitive
to changes in viewpoint, making it more suitable
for exhibitions.

(a) (b)
Figure 8: Realization using non-rectangularity trick.

Figure 9 shows a diagram of the unfolded sur-
face used for a rod of the Penrose triangle. We can
construct the 3D object shown in Figure 8 using
three copies of this diagram. The gray areas are
used for gluing. This diagram is cut, mountain-
folded along the solid lines, and glued to form a
rod. The broken lines in the diagram represent
the area on which the neighboring rod is to be
glued. Face fi+1,3 should be glued to this area.
The three rods are glued in the same manner to
produce the 3D realization shown in Figure 8.
The designed distance from the center of the ob-
ject to the viewpoint is equal to the length of the
edge between the faces fi1 and fi2 multiplied by
3.52.

Three more examples of reconstruction using

f i2
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vi1

v i2
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i3f

i+1,3f

Figure 9: Unfolded surface diagram of rod for Pen-
rose triangle.

the non-rectangularity trick are presented below.
Figure 10 shows a 3D realization of the Penrose
rectangle in Figure 6(a), Figure 11 shows a 3D re-
alization of the Penrose pentagon in Figure 6(b),
and Figure 12 shows a 3D realization of the Pen-
rose hexagon. We can construct 3D objects for
all Penrose n-gons in a similar way.

(a) (b)
Figure 10: Realization of Penrose rectangle.

(a) (b)
Figure 11: Realization of Penrose pentagon.

5 Gradient Space Representation

A graphical characterization is known for the re-
alizability of a 3D polyhedral structure from 2D
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(a) (b)
Figure 12: Realization of Penrose octagon.

images [14, 15, 16]. In this section, we discuss
our method from this graphical characterization
point of view. In the following, we assume that
a 2D image is an orthographic projection of a 3D
object, which is a special case where the view-
point is at infinity. However, the discussion is
valid because the realizability for the central pro-
jection is equivalent to the relizability for the or-
thographic projection, although the relized object
shapes are different [12].

Let f1 and f2 be two planes fixed in the xyz
space. Suppose that they are represented by

z = aix+ biy + ci (3)

for i = 1, 2. Vector (ai, bi) is called the gradient of
the plane fi. Any planes with the same gradient
are parallel to each other. The gradient (ai, bi)
can be regarded as a point in the two-dimensional
plane. This plane is called the gradient space.

Let L be the line obtained when we project the
intersection of the two planes onto the xy plane
orthographically. The line L is obtained if we
eliminate z from equation (3) for i = 1, 2. Thus,
we get

(a1 − a2)x+ (b1 − b2)y = c2 − c1. (4)

Equation (4) implies that when we overlay the
xy plane and the gradient space, line L will be
perpendicular to the line connecting the two gra-
dients (a1, b1) and (a2, b2); see Figure 13. When
we consider half planes bounded by the line of
intersection instead of the whole planes, we can
also distinguish between a convex connection and
a concave connection with respect to the viewer.
If the connection is convex, one moving in the
direction from (a1, b1) to (a2, b2) crosses line L

from area f1 to area f2. If the connection is con-
cave, one moving in the direction from (a1, b1) to
(a2, b2) crosses line L from area f2 to area f1.

f1

f2(a₁, b!)

(a₂, b#)

x

y L

Figure 13: Gradients and intersection of planes.

Therefore, if a line drawing that represents a
structure composed of planar faces is realizable as
a 3D object, the gradient points associated with
the faces can be located in the xy plane in such a
way that the line connecting two gradient points
is perpendicular to the line of the intersection of
the corresponding two faces, and they are located
either in the same or opposite order according to
whether the edge is convex or concave. This is a
graphical way to check the realizability of a 3D
object. However, being able to draw the diagram
of gradient points is a necessary but not suffi-
cient condition. Hence, it is used to find actually
impossible figures, but if the graphical condition
is fulfilled, we need to check whether the posi-
tions of the edges are consistent using some other
methods.

The diagram in the gradient space is neverthe-
less useful for understanding the associated 3D
structures intuitively. Figure 14 shows the gra-
dient diagram for the Penrose pentagon, where
gi1 and gi2 represent the gradient points corre-
sponding to the faces fi1 and fi2, respectively, for
i = 1, · · · , 5. Note that the edge between fi1 and
fi2 is perpendicular to the line connecting gi1 and
gi2, and the edge between fi2 and fi+1,1 is per-
pendicular to the line connecting gi,2 and gi+1,1.
We can see that the direction from fi1 to fi2 is
the same as the direction from gi1 to gi2, which
corresponds to the fact that these two faces have
a convex connection. In contrast, the direction
fi2 to fi+1,1 is opposite to the direction from gi2
to gi+1,1, which corresponds to the fact that these
two faces have a concave connection. If we fix the
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center of the coordinate system at the center of
this diagram, then the associated 3D realization
will be rotationally symmetric with respect to a
rotation by 2π/5 (2π/n for the general Penrose
n-gon).
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Figure 14: Gradient diagram for Penrose pentagon.

Similar rotationally symmetric diagrams can
be drawn for any Penrose polygon, from which
the orientations of the faces can be intuitively un-
derstood.

6 Concluding Remarks

We proposed a method for realizing 3D polyhe-
dral structures from a series of impossible figures
called Penrose polygons. This methods does not
employ curved surfaces or discontinuities. In-
stead, it uses the non-rectangularity trick, in
which arbitrary angles are used between faces
even though they appear to meet at right angles.
The resulting 3D objects are less sensitive than
existing methods to viewpoint in the sense that
the trick does not break down when the viewpoint
slightly changes. Moreover, we can make the 3D
structure rotationally symmetric, preserving the
elegance of the original impossible figure.

The Penrose triangle is one of the most beau-
tiful impossible figures because of its simplicity,
symmetry, and strong sense of impossibility. The
figure and its 3D realizations have been used in
various fields, including painting, trick sculpture,
visual psychology, and solid modeling. The pro-
posed realization method could accelerate the use

of 3D realizations because it can generate more
stable visual effects. New applications of this
method will be considered in future research.
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