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Abstract 
In a particle method, it is necessary to search for neighboring particles within the influence radius of a particle. 

This search is called a neighborhood search, and, when using a uniform influence radius, a data structure based 

on a uniform grid is often used. However, because there are some grids where registered particles are all outside 

the influence radius depending on the particle position in the grid, the neighborhood search with data structures 

based on the uniform grid is not efficient. In this study, the efficiency of the neighborhood search with the 

uniform grid was improved. In this method, an axis-aligned bounding box (AABB), which includes particles 

registered in each grid, is acquired, and it is determined whether the AABB is within the influence radius of the 

particle. When the AABB exists outside the influence radius, all particles registered in this grid are outside the 

influence radius, and thus, it is possible to perform the pruning of the neighborhood search. This method, 

implemented on a central processing unit, matched the search result of the uniform grid, and the sum of the 

calculation times for data structure construction and the neighborhood search was reduced by 20.7%. 
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1. Introduction 

Fluid computer graphics (CG) is mainly used in the entertainment 

field, and there is interest in an automatic generation of this animation. 

This animation is generated using a calculation result of a 

discretization of the Navier–Stokes equation. For this calculation, a 

grid method that divides space into grids, a particle method that uses 

nonconnected particle groups, and a hybrid method that uses both are 

proposed. In particle methods, many methods based on smoothed 

particle hydrodynamics (SPH) [1] have been proposed [2-11]. 

In SPH, physical quantities are determined by superposition of 

kernels. Therefore, it is necessary to search for neighboring particles 

within the influence radius of the kernel. This search is called a 

neighborhood search [2], and, when all particles are searched, the 

calculation amount is O(n2) at particle n; thus, the calculation amount 

is generally reduced by the data structure. When the uniform influence 

radius is used, data structures based on a uniform grid [14, 16] are 

often used [2, 16]. However, data structures based on a uniform grid 

have some grids in which all registered particles are outside the 

influence radius, depending on the particle position in the grid, and the 

neighborhood search is not efficient (see Figure 1). 

  In this study, position-based fluids (PBF) [8] was used as the particle 

method based on SPH with the uniform influence radius. The purpose 

of this study was to improve the efficiency of neighborhood search 

with the uniform grid. In this method, an axis-aligned bounding box 

 
Figure 1. Neighborhood search with the uniform grid (2D): in the 

upper left, lower left, and upper right grids, there are no fluid particles 

within the influence radius r of the particle i. 

 

(AABB) including particles registered in each grid is acquired, and it is 

determined whether the AABB is within the influence radius of the 

particle. When the AABB exists outside the influence radius, all 

particles registered in this grid are outside the influence radius, so it is 

possible to perform the pruning of the neighborhood search. The 

proposed method is implemented in parallel on the central processing 

unit (CPU), and the sum of calculation time for the data structure 

construction and the neighborhood search is reduced by 20.7% on 

average compared with the uniform grid. This method matches with 

the result of the neighborhood search by the uniform grid, and there is 
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no difference in the generated image. 

 

2. Related works 
CG studies related to SPH [1] were detailed in a report [2] by 

Ihmsen et al.. The initial study on CG using SPH was an interactive 

CG of water by Müller et al. [3]. This method does not consider the 

incompressibility of the fluid and does not maintain the volume of 

water. Currently, methods attempting to realize incompressibility 

capable of creating more-realistic animation have become mainstream 

[4-11], and one of them is PBF [8]. This method is a fluid calculation 

model using a framework of position-based dynamics [12]. In 

comparison with predictive–corrective incompressible SPH (PCISPH) 

[5], this method permits a larger time step and shows similar behavior 

of the fluid to PCISPH when a position correction repetition 

processing of several tens of times is calculated. In addition, it is 

possible to use it as a real-time application by setting a particle number 

from 80k to 128k and a position correction from 2 to 4, which is useful 

as a method with a reduced calculation amount. PBF has been 

enhanced through unified particle physics [10] for real-time 

applications and includes bidirectional fluid rigid coupling and gas 

animation in its fluid model. In this study, the CG of water is focused 

on, and PBF [8] is adopted. 

Data structures for the neighborhood search in the particle method 

were described in detail in a previous report [2] and a work [16] by 

Ihmsen et al.. These data structures were based on a uniform grid [14, 

16], k-d tree [20, 21, 26], Verlet lists [22-24], and an octree [25]. In the 

neighborhood search for the particle method, the construction and 

search with the uniform grid is performed with a time complexity of O 

(n). In hierarchical data structures, such as kd tree and octree, this 

complexity is O (n log n). Therefore, the uniform grid is suitable for 

the neighborhood search with a uniform influence radius. In fact, for 

the uniform influence radius, a previous study on SPH [34] shows the 

experimental result that the computation time of the uniform grid is 

approximately 3-5 times faster than that of the tree structure. In 

particular, a parallel implementation involves high memory transfer, 

which limits the performance of hierarchical data structures [16]. 

Verlet lists construct lists of particles that are larger than the influence 

radius and use them for the neighborhood search at multiple time steps. 

These particle lists are reconstructed in consideration of particle 

movement distances. An implementation of this method is usually 

based on the uniform grid. Verlet lists work quickly with a small 

number of particles. However, this data structure is slower than data 

structures based on the uniform grid [14, 16], because it requires a 

large amount of memory when the number of particles is large [2]. For 

these reasons, data structures based on the uniform grid were focused 

on in this study. 

In the basic uniform grid, the space is divided with grids, and 

register particles exist in each grid. The grid width is set to the 

influence radius. In a searching process, it is determined whether 

particles registered in a 3 × 3 × 3 neighborhood grid are within the 

influence radius. In the data structure based on the uniform grid, there 

are index sort [13-15], an extension method of index sort [28], Z-index 

sort [16], an implementation of Z-index sort on a graphics processing 

unit (GPU) [27], spatial hashing [16-19], and compact hashing [16]. In 

these data structures based on a uniform grid, there are some grids in 

which all registered particles are outside the influence radius, 

depending on the position in the grid of particles, and the search is not 

efficient. There are many data structures based on the uniform grid, 

however, in this study, the basic uniform grid was focused on because 

it is the simplest data structure. 

Changing the size of a grid cell in a uniform grid changes the 

number of particles to be searched. The optimal size of this value for 

implementation on a CPU was investigated elsewhere [16]. When the 

grid width dg is less than the influence radius r, the number of particles 

registered per grid decreases, and the number of searched particles also 

decreases. However, because the number of grids to be searched 

increases, as the number of queried grids increases, memory transfer 

increases. In that study [16], it was shown that, when the grid width 

was set to dg = r / 2, the processing time increased compared with the 

case of dg = r, and the optimal grid width was the influence radius. 

Therefore, the influence radius r was used for the grid width in the 

present study. 

 

3. Pruning of the neighborhood search 
In this study, the efficiency of the neighborhood search using a 

uniform grid was improved. In this method, AABB, which is a kind of 

bounding volume, is used for the pruning of the neighborhood search. 

The following describes the implementation of PBF in this study, a 

reason for selecting AABB from many bounding volumes, and details 

of the proposed method. 

 

3.1 Implementation of PBF 
This study is based on PBF [8] and considers the surface tension, the 

vorticity confinement, and the artificial viscosity. The data structure 

that is the basis of the improvement is a uniform grid. According to 

previous work [8], construction of a data structure and the 

neighborhood search in PBF are performed only once in one step. 

Therefore, in the neighborhood search, the indices of the particles 

within the influence radius of each particle are stored and then used for 

calculation of particle behavior. At a wall boundary, the penalty 

method prevents particles from advancing inside the wall, and the wall 

particles are not placed. In this case, the number of particles used 

decreases; therefore, the amount of calculation is reduced. However, 

water particles tend to stick to wall boundaries. In the rendering, the 

anisotropic kernel was used, water surfaces were constructed by the 

marching cube, and polygons were displayed with OpenGL. The 

implementation was done on a CPU, and the program was parallelized 

using OpenMP. 

 

3.2 Selection of the bounding volume 
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In this study, an AABB, which is a kind of boundary volume, was 

used for the pruning of the neighborhood search. The bounding 

volume has been detailed elsewhere [29]. Boundary volumes often use 

a sphere [30, 31], an AABB, an oriented bounding box (OBB) [32], 

discrete-orientation polytopes in eight directions (8-DOP), and convex 

hulls [33]. Although other boundary volumes exist, because the 

overlap decision cost is expensive, there are few opportunities to use 

them. 

When using bounding volumes for the pruning of the 

neighborhood search, the construction cost is important. It is possible 

to construct a bounding volume as preprocessing, when the shape of an 

object does not change in the collision detection of the object. By 

contrast, in the neighborhood search, it is necessary to reconstruct the 

bounding volume corresponding to the movement of a particle in each 

step. When it takes a long time to construct it, it will not lead to a 

reduction in the entire computational time. In the proposed method, it 

is also important that the cost to determine whether the bounding 

volume is within the influence radius of the particle is small. Therefore, 

the AABB is selected in the proposed method. Since the AABB 

composed of each grid is guaranteed to be smaller than the grid, 

pruning with the AABB is efficient. Furthermore, the construction of 

an AABB is a process in which the maximum and minimum values of 

the xyz coordinates of a box containing particles are determined, and 

this can be done only through comparison and assigning of values. 

Therefore, the calculation can be performed very robustly without 

including calculation errors resulting from arithmetic operations. 

 
3.3 Pruning of the neighborhood search for the 
uniform grid using an AABB 

In this method, an AABB including particles existing in each grid 

is constructed. Then, a distance da between the AABB of each grid and 

a particle i is calculated, and the distance da is compared with the 

influence radius r to determine whether the AABB is within the 

influence radius r of the particle i (see Figure 2(a)). When the AABB is 

outside the influence radius r, all particles registered in this grid are 

outside the influence radius r, so it is possible to perform the pruning of 

the neighborhood search. When it is within the influence radius r, a 

distance d is calculated between the particle i and each particle 

registered in the grid, and it is judged whether it is within the influence 

radius r of the particle i (see Figure 2(b)). In the implementation, an 

expensive square root calculation can be avoided by judging the 

pruning with a square of the distance da and the influence radius r. An 

efficient method of calculating the square of the distance da is available 

in the literature [29]. It is obtained by comparing maximum and 

minimum values of xyz coordinates that consist of the AABB with xyz 

coordinates of the particle i and adding distances beyond a range of the 

AABB. The specific procedure of the proposed method using the 

distance da and the influence radius r is shown below. 

 

Construction of a data structure 

1) Construct a data structure by the uniform grid. 

2) In each grid, construct the AABB including particles. 

 

Neighborhood search 

1) In 3 × 3 × 3 neighborhood grids centered on the grid where particle i 

is registered, calculate the distance da between the AABB in each grid 

and particle i. 

2) When da ≤ r, it is determined whether particles registered in this grid 

are within the influence radius r of particle i. 

 

It is obvious that the AABB in the grid where the particle i is 

registered is within the influence radius r of the particle i. However, to 

exclude the grid in which the particle i is registered from the judgment 

of the pruning, many comparison processes with respect to the grid 

index are involved, and it does not lead to a reduction of the calculation 

time. Therefore, it is treated the same as the AABBs of other grids. The 

construction of the AABB is performed on each grid, and the 

determination of whether the AABB is within the influence radius r of  

 

(a) Determining whether the AABB is within the influence radius r of 

the particle i: In this example, upper left and upper right grids are 

outside the influence radius r, and it is possible to perform the pruning 

of the neighborhood search. 

 

(b) Figure not displaying pruned fluid particles: Determine whether 

displayed fluid particles are within the influence radius r of the particle 

i. In a lower left grid, all registered particles are outside the influence 

radius r, but depending on a position of the particle i and AABB, they 

may not be pruned. 

Figure 2. Pruning of the neighborhood search using the AABB (2D) 
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the particle i is performed for each particle; therefore, parallel 

processing can be performed. However, when constructing the 

uniform grid by parallel processing, the process of registering particles 

in each grid is performed serially, because it will be in the race 

condition [2]. 

 

4. Results 
In this section, the results of experiments comparing the uniform 

grid and the proposed method are presented. Animation example 1 is a 

basic experiment setup called a “dam break.” Animation example 2 is 

a setup in which six water chunks are dropped on a water surface. 

Animation example 3 is a setup in which two plates are placed and 

water flows from the top of the space. Animation example 4 is a setup 

in which waves are generated by sliding the wall on the left side of the 

space. Animation example 5 is a setup in which two cylinders are 

placed and water flows from the upper left side of the space. In these 

examples, 1,000,000, 1,277,760, 1,084,800, 1,000,000, and 1,044,000 

water particles are used, and the number of calculation steps, including 

sub-steps, is 1000, 1200, 2000, 1000, and 2000, respectively. In these 

experiments, the calculation of particle position correction in PBF was 

performed three times. The resulting images are shown in Figures 3 

through 7. To compare the generated images, Figure 3 shows the 

results of the uniform grid and the proposed method; there is no 

difference in the generated images. This was also confirmed in 

animation examples 2 through 5. 

Table 1 shows data on the calculation times. These data are average 

values at all steps. In the table item “(1) Uniform grid,” the basic 

uniform grid was used for the neighborhood search. “(2) AABB 

pruning” is the proposed method. “Construction” is the construction 

time of each data structure, and “Search” is the time of the 

neighborhood search by each data structure. “Construction and search” 

is the sum of time for “Construction” and “Search.” “Particle behavior 

calculation” is the time taken by the process that calculates the 

behavior of particles. This process includes the PBF, surface tension, 

vorticity confinement, and artificial viscosity. “Total” is the total 

calculation time of “Construction,” “Search,” and “Particle behavior 

calculation.” These calculation times do not include rendering. A 

program was implemented on a CPU and parallelized by OpenMP. 

The CPU was 4.2 GHz with four cores, and memory was 32 GB. 

Data structures take longer to build as they become more complex. 

However, an appropriate data structure reduces the time for the 

neighborhood search. Therefore, “Construction and search” was the 

focus. From Table 1, in animation example 1, it was 1.703 s in “(1) 

Uniform grid” and 1.367 s in “(2) AABB pruning.” The proposed 

method reduced the calculation time by 19.7% compared with the 

uniform grid. In animation examples 2 through 5, the calculation time 

was similarly reduced by 18.7%, 23.5%, 18.8%, and 23.0%, 

respectively. The average value of these was 20.7%. Figure 5 shows a 

graph of the reduction rate in the sum of the calculation times for the 

construction and the search in each step. The vertical axis of the graph 

is the reduction rate in the calculation time of the proposed method for 

the uniform grid, and the horizontal axis is the number of steps. 

Figures 5 (a) to 5 (e) show the data in animation examples 1 through 5. 

The best results are 30.0%, 30.9%, 31.2%, 33.4%, and 29.9%, 

respectively; and the worst results are 8.2%, 7.2%, 4.1%, 11.7%, and 

6.1%, respectively. In the early steps of the animation, the reduction 

rate was relatively high, and, as the animation progressed, the 

reduction rate tended to increase gradually after falling once. In the 

proposed method, when particles are isolated and the number of 

nearby particles decreases, the number of particles contained in the 

AABB decreases, and the effect of the pruning decreases. By contrast, 

when particles are uniformly distributed, the effect of the pruning is 

relatively high. 

Table 2 shows “Average of search target particles” and “Average of 

particles in the influence radius.” These are the sums of all particles 

and are average values at all steps. “Average of search target particles” 

is the average of particles for which it was judged whether the particle 

was within the influence radius in the neighborhood search. “Average 

of particles in the influence radius” is the average of particles that were 

in the influence radius of the particle i as a result of the neighborhood 

search. “Average of search target particles” in animation example 1 

was 427299320.7 for “(1) Uniform grid” and 282275071.5 for “(2) 

AABB pruning.” Therefore, the proposed method pruned 33.9% in 

animation example 1. Similarly, it pruned 33.3%, 32.4%, 34.7%, and 

34.1% in animation examples 2 through 5, respectively. The average 

of these was 33.7%. In “Average of particles in the influence radius,” 

the results of “(1) Uniform grid” and “(2) AABB pruning” match. 

The proposed method is based on the uniform grid and constitutes 

the AABB in each grid. The AABB requires maximum and minimum 

values of the xyz coordinates as data, and it is implemented with six 

real variables. These data are added to the memory amount of the 

uniform grid according to the number of grids. The memory amount at 

program execution is shown below. This memory amount was 

measured with an initial particle placement. In animation example 1, 

the number of initially placed particles is 1,000,000, and the number of 

grids was 92 × 64 × 50 = 294,400. The memory amount was 6659.0 

MB for “(1) Uniform grid” and 6,672.3 MB for “(2) AABB pruning.” 

The memory amount increase of the proposed method compared with 

the uniform grid was 13.3 MB. This was 0.20% of the memory 

amount used by “(2) AABB pruning.” Similarly, in animation 

examples 2 through 5, they are 0.18%, 3.22%, 0.83%, and 4.26%, 

respectively. The memory amounts used by animation examples 3 and 

5, with a small number of initially placed particles, are slightly higher 

than the other animation examples. The memory amount added to the 

uniform grid by the proposed method was small. 

 

5. Conclusion 
In this study, PBF was used as the particle method based on SPH 

using a uniform influence radius, and the efficiency of the 

neighborhood search by the uniform grid was improved. Data 
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structures based on a uniform grid have some grids in which all 

registered particles are outside the influence radius, depending on the 

particle position in the grid, and the search is not efficient. In this study, 

the AABB, which is a kind of boundary volume, was used for the 

pruning of the neighborhood search. The proposed method was 

implemented in parallel on a CPU, and the sum of the calculation 

times for the data structure construction and the neighborhood search 

was reduced by 20.7% on average compared with the uniform grid. 

This method matches the result of the neighborhood search by the 

uniform grid, and there is no difference in the generated image. 
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(a) Uniform grid 

    
 (b) AABB pruning 

Figure 3. Animation example 1: images of 0.0, 1.4, 4.0, and 6.0 s. A setup called a dam break. There is no difference in the images generated by the two methods. 
 

     

     
Figure 4. Animation example 2: images of 0.0, 1.6, 3.2, 4.8, 6.2, and 9.0 s. A total of six water chunks dropped on the water surface. 

 

 
Figure 5. Animation example 3: an image of 8 s. Two 
plates are placed and water flows from the top of the space. 

 

 
Figure 6. Animation example 4: an image of 5.56 s. A wave is generated by sliding the wall on the left side 
of the space. 

 
Figure 7. Animation example 5: an image of 3.76 s. Two cylinders are placed and water flows from the 
upper left side of the space. 
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(a) Animation example 1                        (b) Animation example 2                       (c) Animation example 3 
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           (d) Animation example 4                         (e) Animation example 5 

Figure 5. Reduction rate in the sum of computation time for the construction and the search: a vertical axis of a graph is a reduction rate in a calculation time of the 

proposed method compared with a uniform grid, and a horizontal axis is a number of steps. 

 

Table 1. Calculation time 

 

Table 2. Average of search target particles and average of particles in the influence radius 

 

 

 

 

 

 

 

 

 

 

 

Animation Method 
Construction 

[s] 
Search 

[s] 
Construction and 

search [s] 
Particle behavior 

calculation [s] 
Total 
[s] 

Example 1 (1) Uniform grid 0.091 1.613 1.703 10.711 12.415 
(2) AABB pruning 0.099 1.269 1.367 10.699 12.067 

Example 2 (1) Uniform grid 0.147 1.613 1.760 10.931 12.691 
(2) AABB pruning 0.156 1.276 1.432 10.955 12.387 

Example 3 (1) Uniform grid 0.107 2.411 2.518 14.105 16.622 
(2) AABB pruning 0.105 1.822 1.927 14.101 16.028 

Example 4 (1) Uniform grid 0.120 0.792 0.912 6.987 7.899 
(2) AABB pruning 0.097 0.644 0.741 6.973 7.713 

Example 5 (1) Uniform grid 0.116 2.501 2.617 13.159 15.776 
(2) AABB pruning 0.147 1.869 2.016 13.131 15.147 

Animation Method 
Average of search 

target particles 
Average of particles in 

the influence radius 
Example 1 (1) Uniform grid 427299320.7 70278482.2 

(2) AABB pruning 282275071.5 70278482.2 
Example 2 (1) Uniform grid 508952655.3 81610148.5 

(2) AABB pruning 339531792.0 81610148.5 
Example 3 (1) Uniform grid 347312760.0 62073916.7 

(2) AABB pruning 234841325.1 62073916.7 
Example 4 (1) Uniform grid 407398749.8 66779049.6 

(2) AABB pruning 266156459.9 66779049.6 
Example 5 (1) Uniform grid 367846109.7 62117093.3 

(2) AABB pruning 242378598.4 62117093.3 


