
The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

1

AABB Pruning: Pruning of Neighborhood Search for Uniform

Grid Using Axis-Aligned Bounding Box

Daiki Takeshita (Member)

National Institute of Technology, Akita College

take@akita-nct.ac.jp

Abstract
In a particle method, it is necessary to search for neighboring particles within the influence radius of a particle.

This search is called a neighborhood search, and, when using a uniform influence radius, a data structure based

on a uniform grid is often used. However, because there are some grids where registered particles are all outside

the influence radius depending on the particle position in the grid, the neighborhood search with data structures

based on the uniform grid is not efficient. In this study, the efficiency of the neighborhood search with the

uniform grid was improved. In this method, an axis-aligned bounding box (AABB), which includes particles

registered in each grid, is acquired, and it is determined whether the AABB is within the influence radius of the

particle. When the AABB exists outside the influence radius, all particles registered in this grid are outside the

influence radius, and thus, it is possible to perform the pruning of the neighborhood search. This method,

implemented on a central processing unit, matched the search result of the uniform grid, and the sum of the

calculation times for data structure construction and the neighborhood search was reduced by 20.7%.

Keywords: Particle method, Neighborhood search, Uniform grid, AABB, Pruning

1. Introduction

Fluid computer graphics (CG) is mainly used in the entertainment

field, and there is interest in an automatic generation of this animation.

This animation is generated using a calculation result of a

discretization of the Navier–Stokes equation. For this calculation, a

grid method that divides space into grids, a particle method that uses

nonconnected particle groups, and a hybrid method that uses both are

proposed. In particle methods, many methods based on smoothed

particle hydrodynamics (SPH) [1] have been proposed [2-11].

In SPH, physical quantities are determined by superposition of

kernels. Therefore, it is necessary to search for neighboring particles

within the influence radius of the kernel. This search is called a

neighborhood search [2], and, when all particles are searched, the

calculation amount is O(n2) at particle n; thus, the calculation amount

is generally reduced by the data structure. When the uniform influence

radius is used, data structures based on a uniform grid [14, 16] are

often used [2, 16]. However, data structures based on a uniform grid

have some grids in which all registered particles are outside the

influence radius, depending on the particle position in the grid, and the

neighborhood search is not efficient (see Figure 1).

 In this study, position-based fluids (PBF) [8] was used as the particle

method based on SPH with the uniform influence radius. The purpose

of this study was to improve the efficiency of neighborhood search

with the uniform grid. In this method, an axis-aligned bounding box

Figure 1. Neighborhood search with the uniform grid (2D): in the

upper left, lower left, and upper right grids, there are no fluid particles

within the influence radius r of the particle i.

(AABB) including particles registered in each grid is acquired, and it is

determined whether the AABB is within the influence radius of the

particle. When the AABB exists outside the influence radius, all

particles registered in this grid are outside the influence radius, so it is

possible to perform the pruning of the neighborhood search. The

proposed method is implemented in parallel on the central processing

unit (CPU), and the sum of calculation time for the data structure

construction and the neighborhood search is reduced by 20.7% on

average compared with the uniform grid. This method matches with

the result of the neighborhood search by the uniform grid, and there is

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

2

no difference in the generated image.

2. Related works
CG studies related to SPH [1] were detailed in a report [2] by

Ihmsen et al.. The initial study on CG using SPH was an interactive

CG of water by Müller et al. [3]. This method does not consider the

incompressibility of the fluid and does not maintain the volume of

water. Currently, methods attempting to realize incompressibility

capable of creating more-realistic animation have become mainstream

[4-11], and one of them is PBF [8]. This method is a fluid calculation

model using a framework of position-based dynamics [12]. In

comparison with predictive–corrective incompressible SPH (PCISPH)

[5], this method permits a larger time step and shows similar behavior

of the fluid to PCISPH when a position correction repetition

processing of several tens of times is calculated. In addition, it is

possible to use it as a real-time application by setting a particle number

from 80k to 128k and a position correction from 2 to 4, which is useful

as a method with a reduced calculation amount. PBF has been

enhanced through unified particle physics [10] for real-time

applications and includes bidirectional fluid rigid coupling and gas

animation in its fluid model. In this study, the CG of water is focused

on, and PBF [8] is adopted.

Data structures for the neighborhood search in the particle method

were described in detail in a previous report [2] and a work [16] by

Ihmsen et al.. These data structures were based on a uniform grid [14,

16], k-d tree [20, 21, 26], Verlet lists [22-24], and an octree [25]. In the

neighborhood search for the particle method, the construction and

search with the uniform grid is performed with a time complexity of O

(n). In hierarchical data structures, such as kd tree and octree, this

complexity is O (n log n). Therefore, the uniform grid is suitable for

the neighborhood search with a uniform influence radius. In fact, for

the uniform influence radius, a previous study on SPH [34] shows the

experimental result that the computation time of the uniform grid is

approximately 3-5 times faster than that of the tree structure. In

particular, a parallel implementation involves high memory transfer,

which limits the performance of hierarchical data structures [16].

Verlet lists construct lists of particles that are larger than the influence

radius and use them for the neighborhood search at multiple time steps.

These particle lists are reconstructed in consideration of particle

movement distances. An implementation of this method is usually

based on the uniform grid. Verlet lists work quickly with a small

number of particles. However, this data structure is slower than data

structures based on the uniform grid [14, 16], because it requires a

large amount of memory when the number of particles is large [2]. For

these reasons, data structures based on the uniform grid were focused

on in this study.

In the basic uniform grid, the space is divided with grids, and

register particles exist in each grid. The grid width is set to the

influence radius. In a searching process, it is determined whether

particles registered in a 3 × 3 × 3 neighborhood grid are within the

influence radius. In the data structure based on the uniform grid, there

are index sort [13-15], an extension method of index sort [28], Z-index

sort [16], an implementation of Z-index sort on a graphics processing

unit (GPU) [27], spatial hashing [16-19], and compact hashing [16]. In

these data structures based on a uniform grid, there are some grids in

which all registered particles are outside the influence radius,

depending on the position in the grid of particles, and the search is not

efficient. There are many data structures based on the uniform grid,

however, in this study, the basic uniform grid was focused on because

it is the simplest data structure.

Changing the size of a grid cell in a uniform grid changes the

number of particles to be searched. The optimal size of this value for

implementation on a CPU was investigated elsewhere [16]. When the

grid width dg is less than the influence radius r, the number of particles

registered per grid decreases, and the number of searched particles also

decreases. However, because the number of grids to be searched

increases, as the number of queried grids increases, memory transfer

increases. In that study [16], it was shown that, when the grid width

was set to dg = r / 2, the processing time increased compared with the

case of dg = r, and the optimal grid width was the influence radius.

Therefore, the influence radius r was used for the grid width in the

present study.

3. Pruning of the neighborhood search
In this study, the efficiency of the neighborhood search using a

uniform grid was improved. In this method, AABB, which is a kind of

bounding volume, is used for the pruning of the neighborhood search.

The following describes the implementation of PBF in this study, a

reason for selecting AABB from many bounding volumes, and details

of the proposed method.

3.1 Implementation of PBF
This study is based on PBF [8] and considers the surface tension, the

vorticity confinement, and the artificial viscosity. The data structure

that is the basis of the improvement is a uniform grid. According to

previous work [8], construction of a data structure and the

neighborhood search in PBF are performed only once in one step.

Therefore, in the neighborhood search, the indices of the particles

within the influence radius of each particle are stored and then used for

calculation of particle behavior. At a wall boundary, the penalty

method prevents particles from advancing inside the wall, and the wall

particles are not placed. In this case, the number of particles used

decreases; therefore, the amount of calculation is reduced. However,

water particles tend to stick to wall boundaries. In the rendering, the

anisotropic kernel was used, water surfaces were constructed by the

marching cube, and polygons were displayed with OpenGL. The

implementation was done on a CPU, and the program was parallelized

using OpenMP.

3.2 Selection of the bounding volume

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

3

In this study, an AABB, which is a kind of boundary volume, was

used for the pruning of the neighborhood search. The bounding

volume has been detailed elsewhere [29]. Boundary volumes often use

a sphere [30, 31], an AABB, an oriented bounding box (OBB) [32],

discrete-orientation polytopes in eight directions (8-DOP), and convex

hulls [33]. Although other boundary volumes exist, because the

overlap decision cost is expensive, there are few opportunities to use

them.

When using bounding volumes for the pruning of the

neighborhood search, the construction cost is important. It is possible

to construct a bounding volume as preprocessing, when the shape of an

object does not change in the collision detection of the object. By

contrast, in the neighborhood search, it is necessary to reconstruct the

bounding volume corresponding to the movement of a particle in each

step. When it takes a long time to construct it, it will not lead to a

reduction in the entire computational time. In the proposed method, it

is also important that the cost to determine whether the bounding

volume is within the influence radius of the particle is small. Therefore,

the AABB is selected in the proposed method. Since the AABB

composed of each grid is guaranteed to be smaller than the grid,

pruning with the AABB is efficient. Furthermore, the construction of

an AABB is a process in which the maximum and minimum values of

the xyz coordinates of a box containing particles are determined, and

this can be done only through comparison and assigning of values.

Therefore, the calculation can be performed very robustly without

including calculation errors resulting from arithmetic operations.

3.3 Pruning of the neighborhood search for the
uniform grid using an AABB

In this method, an AABB including particles existing in each grid

is constructed. Then, a distance da between the AABB of each grid and

a particle i is calculated, and the distance da is compared with the

influence radius r to determine whether the AABB is within the

influence radius r of the particle i (see Figure 2(a)). When the AABB is

outside the influence radius r, all particles registered in this grid are

outside the influence radius r, so it is possible to perform the pruning of

the neighborhood search. When it is within the influence radius r, a

distance d is calculated between the particle i and each particle

registered in the grid, and it is judged whether it is within the influence

radius r of the particle i (see Figure 2(b)). In the implementation, an

expensive square root calculation can be avoided by judging the

pruning with a square of the distance da and the influence radius r. An

efficient method of calculating the square of the distance da is available

in the literature [29]. It is obtained by comparing maximum and

minimum values of xyz coordinates that consist of the AABB with xyz

coordinates of the particle i and adding distances beyond a range of the

AABB. The specific procedure of the proposed method using the

distance da and the influence radius r is shown below.

Construction of a data structure

1) Construct a data structure by the uniform grid.

2) In each grid, construct the AABB including particles.

Neighborhood search

1) In 3 × 3 × 3 neighborhood grids centered on the grid where particle i

is registered, calculate the distance da between the AABB in each grid

and particle i.

2) When da ≤ r, it is determined whether particles registered in this grid

are within the influence radius r of particle i.

It is obvious that the AABB in the grid where the particle i is

registered is within the influence radius r of the particle i. However, to

exclude the grid in which the particle i is registered from the judgment

of the pruning, many comparison processes with respect to the grid

index are involved, and it does not lead to a reduction of the calculation

time. Therefore, it is treated the same as the AABBs of other grids. The

construction of the AABB is performed on each grid, and the

determination of whether the AABB is within the influence radius r of

(a) Determining whether the AABB is within the influence radius r of

the particle i: In this example, upper left and upper right grids are

outside the influence radius r, and it is possible to perform the pruning

of the neighborhood search.

(b) Figure not displaying pruned fluid particles: Determine whether

displayed fluid particles are within the influence radius r of the particle

i. In a lower left grid, all registered particles are outside the influence

radius r, but depending on a position of the particle i and AABB, they

may not be pruned.

Figure 2. Pruning of the neighborhood search using the AABB (2D)

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

4

the particle i is performed for each particle; therefore, parallel

processing can be performed. However, when constructing the

uniform grid by parallel processing, the process of registering particles

in each grid is performed serially, because it will be in the race

condition [2].

4. Results
In this section, the results of experiments comparing the uniform

grid and the proposed method are presented. Animation example 1 is a

basic experiment setup called a “dam break.” Animation example 2 is

a setup in which six water chunks are dropped on a water surface.

Animation example 3 is a setup in which two plates are placed and

water flows from the top of the space. Animation example 4 is a setup

in which waves are generated by sliding the wall on the left side of the

space. Animation example 5 is a setup in which two cylinders are

placed and water flows from the upper left side of the space. In these

examples, 1,000,000, 1,277,760, 1,084,800, 1,000,000, and 1,044,000

water particles are used, and the number of calculation steps, including

sub-steps, is 1000, 1200, 2000, 1000, and 2000, respectively. In these

experiments, the calculation of particle position correction in PBF was

performed three times. The resulting images are shown in Figures 3

through 7. To compare the generated images, Figure 3 shows the

results of the uniform grid and the proposed method; there is no

difference in the generated images. This was also confirmed in

animation examples 2 through 5.

Table 1 shows data on the calculation times. These data are average

values at all steps. In the table item “(1) Uniform grid,” the basic

uniform grid was used for the neighborhood search. “(2) AABB

pruning” is the proposed method. “Construction” is the construction

time of each data structure, and “Search” is the time of the

neighborhood search by each data structure. “Construction and search”

is the sum of time for “Construction” and “Search.” “Particle behavior

calculation” is the time taken by the process that calculates the

behavior of particles. This process includes the PBF, surface tension,

vorticity confinement, and artificial viscosity. “Total” is the total

calculation time of “Construction,” “Search,” and “Particle behavior

calculation.” These calculation times do not include rendering. A

program was implemented on a CPU and parallelized by OpenMP.

The CPU was 4.2 GHz with four cores, and memory was 32 GB.

Data structures take longer to build as they become more complex.

However, an appropriate data structure reduces the time for the

neighborhood search. Therefore, “Construction and search” was the

focus. From Table 1, in animation example 1, it was 1.703 s in “(1)

Uniform grid” and 1.367 s in “(2) AABB pruning.” The proposed

method reduced the calculation time by 19.7% compared with the

uniform grid. In animation examples 2 through 5, the calculation time

was similarly reduced by 18.7%, 23.5%, 18.8%, and 23.0%,

respectively. The average value of these was 20.7%. Figure 5 shows a

graph of the reduction rate in the sum of the calculation times for the

construction and the search in each step. The vertical axis of the graph

is the reduction rate in the calculation time of the proposed method for

the uniform grid, and the horizontal axis is the number of steps.

Figures 5 (a) to 5 (e) show the data in animation examples 1 through 5.

The best results are 30.0%, 30.9%, 31.2%, 33.4%, and 29.9%,

respectively; and the worst results are 8.2%, 7.2%, 4.1%, 11.7%, and

6.1%, respectively. In the early steps of the animation, the reduction

rate was relatively high, and, as the animation progressed, the

reduction rate tended to increase gradually after falling once. In the

proposed method, when particles are isolated and the number of

nearby particles decreases, the number of particles contained in the

AABB decreases, and the effect of the pruning decreases. By contrast,

when particles are uniformly distributed, the effect of the pruning is

relatively high.

Table 2 shows “Average of search target particles” and “Average of

particles in the influence radius.” These are the sums of all particles

and are average values at all steps. “Average of search target particles”

is the average of particles for which it was judged whether the particle

was within the influence radius in the neighborhood search. “Average

of particles in the influence radius” is the average of particles that were

in the influence radius of the particle i as a result of the neighborhood

search. “Average of search target particles” in animation example 1

was 427299320.7 for “(1) Uniform grid” and 282275071.5 for “(2)

AABB pruning.” Therefore, the proposed method pruned 33.9% in

animation example 1. Similarly, it pruned 33.3%, 32.4%, 34.7%, and

34.1% in animation examples 2 through 5, respectively. The average

of these was 33.7%. In “Average of particles in the influence radius,”

the results of “(1) Uniform grid” and “(2) AABB pruning” match.

The proposed method is based on the uniform grid and constitutes

the AABB in each grid. The AABB requires maximum and minimum

values of the xyz coordinates as data, and it is implemented with six

real variables. These data are added to the memory amount of the

uniform grid according to the number of grids. The memory amount at

program execution is shown below. This memory amount was

measured with an initial particle placement. In animation example 1,

the number of initially placed particles is 1,000,000, and the number of

grids was 92 × 64 × 50 = 294,400. The memory amount was 6659.0

MB for “(1) Uniform grid” and 6,672.3 MB for “(2) AABB pruning.”

The memory amount increase of the proposed method compared with

the uniform grid was 13.3 MB. This was 0.20% of the memory

amount used by “(2) AABB pruning.” Similarly, in animation

examples 2 through 5, they are 0.18%, 3.22%, 0.83%, and 4.26%,

respectively. The memory amounts used by animation examples 3 and

5, with a small number of initially placed particles, are slightly higher

than the other animation examples. The memory amount added to the

uniform grid by the proposed method was small.

5. Conclusion
In this study, PBF was used as the particle method based on SPH

using a uniform influence radius, and the efficiency of the

neighborhood search by the uniform grid was improved. Data

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

5

structures based on a uniform grid have some grids in which all

registered particles are outside the influence radius, depending on the

particle position in the grid, and the search is not efficient. In this study,

the AABB, which is a kind of boundary volume, was used for the

pruning of the neighborhood search. The proposed method was

implemented in parallel on a CPU, and the sum of the calculation

times for the data structure construction and the neighborhood search

was reduced by 20.7% on average compared with the uniform grid.

This method matches the result of the neighborhood search by the

uniform grid, and there is no difference in the generated image.

References
[1] R. A. Gingold and J. J. Monaghan, Kernel Estimates as a Basis for

General Particle Methods in Hydrodynamics, Journal of

Computational Physics, 46, pp.429-453, 1988.

[2] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb and M. Teschner,

SPH Fluid in Computer Graphics, Eurographics 2014 - State of the Art

Reports, 2014.

[3] M. Müller, D. Charypar and M. Gross, Particle-Based Fluid

Simulation for Interactive Applications, Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation,

pp.154-159, 2003.

[4] M. Becker and M. Teschner, Weakly compressible SPH for free

surface flows, Proceedings of the 2007 ACM SIGGRAPH/

Eurographics symposium on Computer animation, pp.209-217, 2007.

[5] B. Solenthaler and R. Pajarola, Predictive-Corrective

Incompressible SPH, Proceedings of ACM SIGGRAPH 2009,

pp.40:1-40:6, 2009.

[6] K. Bodin, C. Lacoursiere and M. Servin, Constraint Fluids, IEEE

Transactions on Visualization and Computer Graphics, 18, 3,

pp.516-526, 2012.

[7] X. He, N. Liu, S. Li, H. Wang and G. Wang, Local Poisson SPH

For Viscous Incompressible Fluids, Journal of Computer Graphics

Forum, 31, 6, pp.1948-1958, 2012.

[8] M. Macklin and M. Müller, Position Based Fluids, ACM

Transaction on Graphics, 32, 4, pp.104:1-104:12, 2013.

[9] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath and M.

Teschner, Implicit incompressible SPH, IEEE Transactions on

Visualization and Computer Graphics, 20, 3, pp.426-435, 2014.

[10] M. Macklin, M. Müller, N. Chentanez and T.-Y. Kim, Unified

Particle Physics for Real-time Applications, ACM Transaction on

Graphics, 33, pp.153:1-153:12, 2014.

[11] J. Bender and D. Koschier, Divergence-free smoothed particle

hydrodynamics, Proceedings of the 14th ACM SIGGRAPH/

Eurographics Symposium on Computer Animation, pp.147-155, 2015.

[12] M. Müller, B. Heidelberger, M. Hennix and J. Ratcliff, Position

Based Dynamics, Journal of Visual Communication and Image

Representation, 18, 2, pp.109-118, 2007.

[13] T. J. Purcell, C. Donner, M. Camimarano, H. W. Jensen and P.

Hanrahan, Photon mapping on programmable graphics hardware,

Proceedings of the ACMSIGGRAPH/ EUROGRAPHICS conference

on Graphics hardware, pp. 41–50, 2003.

[14] S Green, Cuda particles, NVIDIA whitepaper 2 (3.2), 1, 2008.

[15] J. Kalojanov and P. An Slusallek, A parallel algorithm for

construction of uniform grids, Proceedings of the 1st ACM conference

on High Performance Graphics, pp.23-28, 2009.

[16] M. Ihmsen, N. Akinci, M. Becker and M. Teschner, A Parallel

SPH Implementation on Multi-core CPUs, Journal of Computer

Graphics Forum, 30, 1, pp.99-112, 2011.

[17] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets and M.

Gross, Optimized Spatial Hashing for Collision Detection of

Deformable Objects, Proceedings of Vision, Modeling, Visualization,

pp.47–54, 2003.

[18] E. Guendelman, R. Bridson and R.Fedkiw, Nonconvex rigid

bodies with stacking, ACM Transactions on Graphics, 22, 3, 871–878,

2003.

[19] N. Bell, Y. Yu and P. J. Mucha, Particle-based simulation of

granular materials, Proceedings of the ACM

SIGGRAPH/Eurographics symposium on Computer animation, pp.

77–86, 2005.

[20] B. Adams, M. Pauly, R. Keiser and L.Guibas, Adaptively

sampled particle fluids, ACM Transactions on Graphics - Proceedings

of ACM SIGGRAPH 2007, pp.48:1-48:7, 2007.

[21] F. Sin, A. W. Bargteil and J. K. Hodgins, A pointbased method

for animating incompressible flow, Proceedings of the 2009 ACM

SIGGRAPH /Eurographics Symposium on Computer Animation, pp.

247–255. 3, 5, 2009.

[22] L. Verlet, Computer experiments on classical fluids. I.

Thermodynamical properties of Lennard-Jones molecules. Phys. Rev.

159, 1, 98–103, 1967.

[23] S. Hieber, Particle-Methods for Flow-Structure Interactions. PhD

thesis, Swiss Federal Institute of Technology, 2007.

[24] B. Pelfrey and D. House, Adaptive neighbor pairing for smoothed

particle hydrodynamics. Advances in Visual Computing 6454,

192–201. 3, 2010.

[25] B. Vermuri, Y. Cao and L. Chen, Fast collision detection

algorithms with applications to particle flow. Computer Graphics

Forum 17, 2 (1998), pp.121-134, 1998.

[26] H. Samet, The design and analysis of spatial data structures,

Addison–Wesley, 1990.

[27] P. Goswami, P. Schlegel, B. Solenthaler and R. Pajarola,

Interactive SPH Simulation and Rendering on the GPU, Eurographics/

ACM SIGGRAPH Symposium on Computer Animation, pp. 1–10,

2010.

[28] S.-K. Im and K.-H. Chan, Fast Particle Neighbor Searching for

Unlimited Scene with Fluid Refraction Improvement, International

Journal of Modeling and Optimization, Vol. 6, No. 2, pp.71-76, 2016.

[29] C. Ericson, Real-Time Collision Detection, CRC Press, 2004．

[30] E.Welzl, Smallest enclosing disks (balls and ellipsoids),

H.Maurer Ed., New Results and New Trends in Computer Science,

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

6

Lecture Notes in Computer Science 555, SpringerVerlag, pp. 359–370,

1991.

[31] B. Gärtner, Fast and Robust Smallest Enclosing Balls,

Proceedings 7th Annual European Symposium on Algorithms (ESA),

Lecture Notes in Computer Science 1643, Springer-Verlag,

pp.325-338, 1999.

[32] G. Barequet and S. Har-Peled, Efficiently Approximating the

Minimum-Volume Bounding Box of a Point Set in Three Dimensions,

Journal of Algorithms, Volume 38, Issue 1, pp.91-109, 2001.

[33] C. B. Barber, D. P. Dobkin and H. Huhdanpaa, The Quickhull

Algorithm for Convex Hulls, ACM Transactions on Mathematical

Software, Vol. 22, No. 4, 1996.

[34] L. Hernquist and N. Katz, TreeSPH: A unification of SPH with

the hierarchical tree method, Astrophysical Journal Supplement Series,

Vol. 70, pp.419-446, 1989.

Daiki Takeshita received the Ph.D. degree in electrical engineering

and computer science from Iwate University in 2005. Since 2018, he

has been an Associate professor with the National Institute of

Technology, Akita College. His research interests include computer

graphics, image processing, and human interfaces. He is a member of

the Society of Art and Science, ACM, and IEEE Computer Society.

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

7

(a) Uniform grid

 (b) AABB pruning

Figure 3. Animation example 1: images of 0.0, 1.4, 4.0, and 6.0 s. A setup called a dam break. There is no difference in the images generated by the two methods.

Figure 4. Animation example 2: images of 0.0, 1.6, 3.2, 4.8, 6.2, and 9.0 s. A total of six water chunks dropped on the water surface.

Figure 5. Animation example 3: an image of 8 s. Two
plates are placed and water flows from the top of the space.

Figure 6. Animation example 4: an image of 5.56 s. A wave is generated by sliding the wall on the left side
of the space.

Figure 7. Animation example 5: an image of 3.76 s. Two cylinders are placed and water flows from the
upper left side of the space.

The Journal of the Society for Art and Science, Vol. 19, No. 1, pp. 1-8 (2020)

8

0

5

10

15

20

25

30

35

[%]

[step]
100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000 1100 1200

[%]

[step]
0

5

10

15

20

25

30

35

[%]

[step]
200 400 600 800 1000 1200 1400 1600 1800 2000

(a) Animation example 1 (b) Animation example 2 (c) Animation example 3

0

5

10

15

20

25

30

35

40

[%]

[step]
100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

[%]

[step]
200 400 600 800 1000 1200 1400 1600 1800 2000

 (d) Animation example 4 (e) Animation example 5

Figure 5. Reduction rate in the sum of computation time for the construction and the search: a vertical axis of a graph is a reduction rate in a calculation time of the

proposed method compared with a uniform grid, and a horizontal axis is a number of steps.

Table 1. Calculation time

Table 2. Average of search target particles and average of particles in the influence radius

Animation Method
Construction

[s]
Search

[s]
Construction and

search [s]
Particle behavior

calculation [s]
Total
[s]

Example 1 (1) Uniform grid 0.091 1.613 1.703 10.711 12.415
(2) AABB pruning 0.099 1.269 1.367 10.699 12.067

Example 2 (1) Uniform grid 0.147 1.613 1.760 10.931 12.691
(2) AABB pruning 0.156 1.276 1.432 10.955 12.387

Example 3 (1) Uniform grid 0.107 2.411 2.518 14.105 16.622
(2) AABB pruning 0.105 1.822 1.927 14.101 16.028

Example 4 (1) Uniform grid 0.120 0.792 0.912 6.987 7.899
(2) AABB pruning 0.097 0.644 0.741 6.973 7.713

Example 5 (1) Uniform grid 0.116 2.501 2.617 13.159 15.776
(2) AABB pruning 0.147 1.869 2.016 13.131 15.147

Animation Method
Average of search

target particles
Average of particles in

the influence radius
Example 1 (1) Uniform grid 427299320.7 70278482.2

(2) AABB pruning 282275071.5 70278482.2
Example 2 (1) Uniform grid 508952655.3 81610148.5

(2) AABB pruning 339531792.0 81610148.5
Example 3 (1) Uniform grid 347312760.0 62073916.7

(2) AABB pruning 234841325.1 62073916.7
Example 4 (1) Uniform grid 407398749.8 66779049.6

(2) AABB pruning 266156459.9 66779049.6
Example 5 (1) Uniform grid 367846109.7 62117093.3

(2) AABB pruning 242378598.4 62117093.3

