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Abstract
In this paper, we propose four new plane estimation methods using only single uncalibrated image. It
is well known that only one image cannot provide enough 3D information, but some metrical quantities
can be estimated directly from the single image by using geometrical clues such as planarity of points
and parallelism of lines and planes. Specifically in this paper, we utilize four new geometrical clues
to estimate a specified space plane; the first is known length on the plane, the second is known angle
on the plane, the third is true circle and its center position on the plane, and the last is two circles
on the plane or its parallel ones. Furthermore, we estimate several 3D entities such as a distance
between two space points from the single image by using estimated planes. Experiments using some
real images verified that our methods give good 3D information.
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1. Introduction

It is important research to extract and recon-
struct 3D structures in real world from 2D im-
ages. For this research, the stereo method is used,
which inputs two or more images taken from dif-
ferent viewpoints (multi-view images). However,
the stereo method has a problem that it is diffi-
cult to match corresponding points accurately be-
tween images and that their position error greatly
affects estimation accuracy of 3D entities. More-
over, we cannot use the stereo method if we target
old image data and images taken by fixed surveil-
lance camera. Thus in this paper, we focus on an
issue to extract 3D entities by using a single un-
calibrated image, without multi-view images.

If we use a single viewpoint image, we usually
need some clues about scenes (for example, sev-
eral imaged points lie on the same plane in the
real world) since we use only one image. As de-
scribed in references [2] to [5], 3D measurement
methods by using various clues have been sug-
gested. Among them, Wang[4] et al. shows that
the plane intersecting with a fixed reference plane
could be estimated in a unified frame from some
clues in the image. Furthermore, Wang et al. ver-
ified that precise 3D entities could be extracted
from each of the estimated plane parameters and
implemented more accurate measurement meth-
ods than conventional ones. But their method left
some problems such as the image of intersection
lines must be visible in the image or a projec-
tion matrix must be calculated again if another
plane was regarded as the reference plane. There-
fore in this paper, we first generalize the plane
estimation method in which the reference plane
is not fixed. From this, an estimated arbitrary
space plane can be a new reference plane, and
space planes can be estimated in order without
recalculating a projection matrix. We also show
that the plane intersecting obliquely with a refer-
ence plane can be obtained from four kinds of new
clues. It is expected that our method can spread
the range of applicable images and the versatile
three-dimensional measurement method can be
established.

In the following sections, we give the outline
of necessary projective geometry and explain the

details of our method.

2. Camera model and preliminary
knowledge

2.1. Notation

A space point in the world XY Z coordinate sys-
tem is described as X = [X,Y, Z]T using the cap-
ital letters of alphabet. The point in uv image co-
ordinate system corresponding to the space point
is described as m = [u, v]T using the small let-
ters. The homogeneous vector for space point X
is described as X̃ = [X,Y, Z, 1]T and that for im-
age point m as m̃ = [u, v, 1]T. (a, b) represents
the inner product of 3D vector a, b and a × b
represents the cross product of a, b.

2.2. Camera projection matrix

The processing of space point X projected to im-
age point m by a camera is modeled by using
3× 4 matrix P = [pij ] as follows.

λm̃ = PX̃ = [p1,p2,p3,p4]X̃ = K[R, t]X̃, (1)

where λ having depth information of the 3D
space. The degree of freedom for projection ma-
trix P is 11 because it can only be defined mean-
ingfully up to a scaling factor. K is called camera
intrinsic matrix including the parameters unique
for the camera to be used. Matrix [R, t] is called
camera extrinsic matrix representing transform
between the world coordinate system and the
camera coordinate system, where matrix R and
vector t represent rotation and translation respec-
tively.

Here, we show a lemma about projection ma-
trix P (for the proof, please refer to [1]).

lemma 1. For the line l in an image, its back-
projection is a plane including camera center oc

and straight line l, and the plane can be written
as πb = PTl using projection matrix P .

2.3. Homography

If a base plane π0 = [0, 0, 1, 0]T in space is sup-
posed to be the reference plane (the world coordi-
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nate system is determined so as to be Z = 0), we
have the equation below from Eq.(1) about space
point X = [X,Y, 0, 1]T on the reference plane:

λm̃ = P [X,Y, 0, 1]T

= [p1,p2,p4][X,Y, 1]T = Hx̃r. (2)

This means that 2D point x̃r = [X,Y, 1]T on the
reference plane is projected to point m̃ on the
image plane by 3× 3 regular matrix H, which is
called homography. The degree of freedom is 8
(up to scale). If correspondence for four pairs of
points between the reference and image planes is
determined, H can be calculated.

2.4. Conic

A curve described by a second-degree equation in
the plane is called a conic, which can be repre-
sented by the following equation:

ax2 + bxy + cy2 + dx+ ey + f = 0.

If x̃ = [x, y, 1]T is provided, this equation can be
expressed by the following quadratic form:

(x̃, Cx̃) = x̃TCx̃ = 0,

where

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 .

In the following, C is used as the matrix repre-
senting a conic.

Specifically, the absolute conic Ω∞ is a conic on
the plane at infinity Π∞ = [0, 0, 0, 1]T, which can
be expressed as Ω∞ = I3 = diag(1, 1, 1). Ω∞ is
composed of purely imaginary points on the Π∞.

Here, some lemmas are shown about conics (for
the proof, please refer to [1]).

lemma 2. The relationship between pole x and
polar l about conic C is expressed as l = Cx̃. In
particular, when C is a true circle, the polar of
circle center xc is the line at infinity L∞ (L∞ =
Cx̃c).

lemma 3. Arbitrary circle Ωc in a space plane
always intersects with absolute conic Ω∞ at two
points. These two points I, J (= [1,±i, 0]T) are
called circular points of the plane.

Figure 1: Estimation of projection matrix P .

lemma 4. Image ω of absolute conic Ω∞ is ex-
pressed by ω = (KKT)−1 using only camera in-
trinsic matrix K.

3. Estimation of projection matrix

The key to 3D measurements is estimation of pro-
jection matrix P . If camera is calibrated, we can
define P = K[R, t]. But this paper handles un-
calibrated images, it is necessary to estimate P
with some kind of clues about the scene. Al-
though references [2] and [4] describe the concrete
estimation methods, P is estimated based on the
following proposition in this paper.

proposition 1. If homography H about base
plane π0 = [0, 0, 1, 0]T is known, projection ma-
trix P can be estimated by two imaged points of
two end points where heights from π0 are both
known.

Proof. As Fig.1 shows, suppose that two end
points of a segment where height from π0 is
h0 are described as X̃0 = [X0, Y0, 0, 1]

T and
X̃ ′

0 = [X0, Y0, h0, 1]
T, and that of another seg-

ment where height is h1 are X̃1 = [X0, Y0, 0, 1]
T

and X̃ ′
1 = [X0, Y0, h1, 1]

T. Also, suppose four
image points corresponding to X̃i, X̃ ′

i (i =
0, 1) are described as m̃i = [ui, vi, 1]

T, m̃′
i =

[u′i, v
′
i, 1] (i = 0, 1), respectively. The homogra-

phy H = [p1,p2,p4] is known, so here it is needed
to estimate only the third vector p3 of P .
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The X,Y coordinates of X0 and X1 on π0 can
be calculated from Eq.(2) as

[Xi, Yi, 1]
T = λiH

−1m̃i (i = 0, 1). (3)

Note that λi can be removed by the third equa-
tion of Eq.(3). For space points X ′

0 and X ′
1,{

λ0m̃
′
0 = [p1,p2,p3,p4]X̃

′
0

λ1m̃
′
1 = [p1,p2,p3,p4]X̃

′
1

(4)

is obtained from Eq.(1). Since λ0, λ1 can be re-
moved from the above equation,

Ap3 = b (5)

is obtained, while

A =


0 0 −u′0h0
0 0 −v′0h0
h1 0 −u′1h1
0 h1 −v′1h1

 ,

b =


(p31u′

0−p11)X0+(p32u′
0−p12)Y0+(p34u′

0−p14)

(p31v′0−p21)X0+(p32v′0−p22)Y0+(p34v′0−p24)

(p31u′
1−p11)X1+(p32u′

1−p12)Y1+(p34u′
1−p14)

(p31v′1−p21)X1+(p32v′1−p22)Y1+(p34v′1−p24)

 .

(6)

Therefore, p3 is given as the following equation.

p3 = (ATA)−1ATb (7)

In this paper, correspondence of four points to
define homography H is given manually and RQ
decomposition[1] is used to obtain K,R, t from
the estimated projection matrix P．

The estimation method based on proposition
1 is a similar to the Tsai[7] method, so-called
6 points algorithm. In that point of view, our
method has an advantage that there is no need to
determine an accurate vanishing point of orthog-
onal direction for calculating projection matrix,
compared with other estimation methods such as
Wang[4] et al. method.

4. Estimation of plane

When projection matrix P is determined, planes
in 3D space can be estimated only from an image.
This paper describes further generalization of the
Wang[4] et al. method and suggests a method to
estimate a plane from four new clues.

Figure 2: Two kinds of clues: known length D
and known angle θ on πp (π1 is refer-
ence plane, π2 is vertical plane, and πp

is arbitrary plane).

4.1. Estimation of a plane perpendicular
to a reference plane

Suppose a reference plane π1 = [a1, b1, c1, d1]
T

is known. For a plane π2 = [a2, b2, c2, d2]
T in-

tersecting the plane π1 perpendicularly with the
line L, we have the following proposition (see also
Fig.2).

proposition 2. Plane π2 = [a2, b2, c2, d2]
T in-

tersecting the reference plane π1 perpendicularly
with the line L can be determined by using back-
projection PTl of intersection line image l.

Proof. From lemma 1, a plane as the back-
projection of intersection line image l is given as
πb = PTl. Since three planes π1,π2, and πb form
the pencil in which intersection line L is shared,
π2 is expressed by using unknown scalar ν as

πb = νπ1 + π2. (8)

If we put πb = [a3, b3, c3, d3]
T, the following equa-

tion is obtained from Eq.(8) since plane π1 inter-
sects with π2 perpendicularly,

ν =
a1a3 + b1b3 + c1c3

a21 + b21 + c21
. (9)

Therefore π2 is given as the following equation．

π2 = PTl− νπ1. (10)
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Proposition 2 is corresponding to a generaliza-
tion of proposition 3 in [4] shown by Wang et
al. Since their method assumes a fixed refer-
ence plane [0, 0, 1, 0]T, a plane adjacent to the
reference plane can only be estimated. In other
words, if we want to estimate the next plane ad-
jacent to the first estimated plane by using Wang
et al. method, projection matrix P must be re-
calculated so as to the first estimated plane is set
to [0, 0, 1, 0]T as a new reference plane on a new
world coordinate system. On the other hand,
our method assumes a generic reference plane
[a1, b1, c1, d1]

T. Thus the base plane π0 can be
used as the first reference plane, and then a newly
estimated space plane will be the next reference
plane without recalculating projection matrix P
1.

4.2. Estimation of a plane intersecting at
an arbitrary angle with a reference
plane

As Fig.2 shows, plane πp that intersects with line
L at an arbitrary angle can be written as the pen-
cil that shares intersection line L between refer-
ence plane π1 = [a1, b1, c1, d1]

T and vertical plane
π2 = [a2, b2, c2, d2]

T as follows:

πp = µπ1 + π2. (11)

This paper proposes a method to obtain un-
known scalar µ from four new clues described be-
low.

4.2.1. Method with a known length on πp

As Fig.2 shows, suppose that two points X1,X2

exist on plane πp and the real length D from X1

to X2 is already known. Let the imaged points
of X̃1, X̃2 be m̃1 = [u1, v1, 1]

T, m̃2 = [u2, v2, 1]
T,

respectively.

proposition 3. Plane πp can be calculated by
using the m̃1, m̃2. However, both of X1 and X2

do not exist on the intersection line L.

1Thus, an implementation program can probably be writ-
ten by simpler code.

Proof. By Eq.(1) and X1,X2 ∈ πp, the follow-
ing equations hold for 3D points X1 and X2:{

λim̃i = PX̃i

πT
p X̃i = 0

(i = 1, 2).

Since λi can be removed from the former equa-
tion,

ΣiXi = γi, (i = 1, 2) (12)

is obtained, while

Σi =

p11 − p31ui p12 − p32ui p13 − p33ui
p21 − p31vi p22 − p32vi p23 − p33vi
a2 + µa1 b2 + µb1 c2 + µc1

 ,

γi =

p34ui − p14
p34vi − p24
−d2 − µd1

 (i = 1, 2).

Therefore, Xi is given as:

Xi =
1

(α)iµ+ (β)i

(f1)iµ+ (g1)i
(f2)iµ+ (g2)i
(f3)iµ+ (g3)i

 (i = 1, 2),

(13)
where the coefficients (α)i, (β)i, (f1)i, (g1)i, (f2)i,
(g2)i, (f3)i and (g3)i are all scalar values and their
concrete expressions are given in Appendix 4.2.1.
Since the real length from X1 to X2 is D, the
following equation holds:

∥X2 −X1∥2 = D2. (14)

Thus, by substituting Eq.(13) to Eq.(14), the fol-
lowing quartic equation of µ is obtained:

k4µ
4 + k3µ

3 + k2µ
2 + k1µ+ k0 = 0. (15)

The concrete expressions of coefficients
k4, k3, k2, k1, k0 are given in Appendix 4.2.1.
Solve this quartic equation of µ and select a
proper one from real solutions, plane πp can be
determined.

4.2.2. Method with a known angle on πp

As Fig.2 shows, suppose that two lines L1,L2 ex-
ist on plane πp, and the angle θ formed by them
is already known.

proposition 4. Plane πp can be calculated by
using two imaged lines l1, l2 of L1,L2 if the in-
tersecting angle θ on πp is already known.
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Proof. From lemma1, the back-projected planes
πb1,πb2 of imaged lines l1, l2 are given as:

πbi = PTli (i = 1, 2).

If we put P = [M,p4] (M = [p1,p2,p3]), the nor-
mal vectors nb1,nb2 of planes πb1,πb2 are given
as:

nbi = MTli (i = 1, 2).

Meanwhile, from Eq.(11), the normal vector np

of plane πp is expressed by using normal vectors
n1,n2 of planes π1,π2 vertical with each other
as:

np = µn1 + n2. (16)

Since the line Li (i = 1, 2) on plane πp is the
intersecting line of planes πp and πbi, the direc-
tional vector di of Li is orthogonal to both of
np,nbi and given as:

di = np × nbi

= µ(n1 × nbi) + (n2 × nbi) (i = 1, 2). (17)

Since the angle formed by d1 and d2 is θ, the
following equation holds:

cos θ =
dT
1 d2√

dT
1 d1

√
dT
2 d2

. (18)

Thus, by substituting Eq.(17) to Eq.(18), the fol-
lowing quartic equation of µ is obtained:

k′4µ
4 + k′3µ

3 + k′2µ
2 + k′1µ+ k′0 = 0. (19)

The concrete expressions of coefficients
k′4, k

′
3, k

′
2, k

′
1, k

′
0 are given in Appendix 4.2.2.

Solve this quartic equation of µ and select a
proper one from all real solutions, plane πp can
be determined.

It should be noted that if the line L1 is orthog-
onal to the line L2, Eq.(19) will be a quadratic
equation of µ because of dT

1 d2 = 0. In case that
the line L1 is parallel to the line L2, Eq.(19) will
be a linear equation of µ because of d1 × d2 = 0
and nT

1 n2 = 0.

Figure 3: Another two kinds of clues: true circle
Ω1 and its center xc, and two true cir-
cles Ω1,Ω2 on πp (π1 is reference plane,
π2 is vertical plane, and πp is arbitrary
plane).

4.2.3. Method with a true circle and its
center on πp

As Fig.3 shows, suppose that true circle Ω1 exists
on plane πp. The image of Ω1 is assumed to be
C1 and the image corresponding to circle center
x̃c of Ω1 to be m̃c.

proposition 5. Plane πp can be calculated by
using the C1 and m̃c.

Proof. The normal vectors of planes πp,π1, and
π2 are given as np,n1, and n2, respectively. From
Eq.(11), we have the following normal vector:

np = µn1 + n2. (20)

From lemma 2, vanishing line l∞ of plane πp is
obtained by the following expression:

l∞ = C1m̃c. (21)

Since plane πb as the back-projection of the van-
ishing line l∞ should be parallel to plane πp, the
normal vectors nb and np will also be parallel.
From lemma 1, πb = PTl∞ is given, the normal
vector of plane πb is:

nb = [(PTl∞)1, (P
Tl∞)2, (P

Tl∞)3]. (22)

Since np is parallel to nb, the following is ob-
tained:

nb × np = 0. (23)

Thus, Eq.(20) is substituted to Eq.(23) to solve
the equation about µ. Then µ is substituted to
Eq.(11), plane πp can be determined.
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4.2.4. Method with the image of two true
circles on πp

As Fig.3 shows, suppose true circles Ω1,Ω2 exists
on plane πp

2 and the images of each circle are
C1, C2 respectively.

proposition 6. Plane πp can be calculated from
C1 and C2.

Proof. According to the Bézout’s theorem, two
conics always intersect at four points3. Therefore,
each of Ω1 and Ω∞, and Ω2 and Ω∞ on plane πp

contains four intersection points. However, from
lemma 3, two points among the four are equal to
the circular points I = [1, i, 0]T, J = [1,−i, 0]T.

Since the relationship described above do not
change after projective transform, it is applied
also to the image plane. In other words, each
of image C1 and ω, and image C2 and ω con-
tains four intersection points and the common
points should become image m̃I , m̃J of the cir-
cular points I, J . If the following is given:

C1 =

 a1 h1/2 g1/2
h1/2 b1 f1/2
g1/2 f1/2 1

 ,

ω = (KKT)−1 ≡

 ω1 ω2/2 ω3/2
ω2/2 ω4 ω5/2
ω3/2 ω5/2 1

 ,

the intersection points will be obtained by solving
the following:{

a1x
2 + h1xy + b1y

2 + g1x+ f1y + 1 = 0

ω1x
2 + ω2xy + ω4y

2 + ω3x+ ω5y + 1 = 0.

(24)
In other words, y is removed from Eq.(24) to ob-
tain a quartic equation of x, and four intersection
points are calculated. Solve it for C2 and ω in the
same manner and calculate the solution common
to the former one, then m̃I ,m̃J are determined.
Since m̃I ,m̃J are imaginary circular points, the
line joined with m̃I and m̃J should be a vanish-
ing line (of plane πp). Since vanishing line l∞
is

l∞ = m̃I × m̃J ,
2A plane parallel to πp is also available.
3Ideal points must be considered in the range of complex
number.

the subsequent operations must follow the proce-
dure of the latter half of the proof of proposition
5.

5. Specification of 3D point from
image point

If projection matrix P and space plane π =
[a, b, c, d]T are both estimated, various 3D enti-
ties can be estimated from an image. The base
proposition is as follows:

proposition 7. Arbitrary 3D space point X =
[X,Y, Z]T on space plane π can be calculated from
the corresponding image point m if π is already
known.

Proof. By Eq.(1) and X ∈ π,{
λm̃ = PX̃

πTX = 0
(25)

is obtained. If λ is removed from this equation,

AX = b

is obtained, while

A =

p11 − p31u p12 − p32u p13 − p33u
p12 − p31v p22 − p32v p23 − p33v

a b c

 ,

b =

p34u− p14
p34v − p24

−d

 . (26)

This must be solved for X.

If this is used, various quantities can be measured
from only a single viewpoint image, such as the
distance between two points on a plane, angle be-
tween two lines, or distance between space points
belonging to different planes.

6. Experiment

To verify validity and effectiveness of our method,
we had experiments with two input images (Figs.
4 and 6) photographed by NIKON D7000 cam-
era in our university campus. The resolution of
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Figure 4: Test image 1.

Figure 5: Three spatial distances to be estimated.

each image is 640×424 pixels. Fig.4 is the im-
age where a true circle is drawn in the frame
(plane 4○) hung obliquely on the back of the gray
shelf (plane 2○) behind the desk. In this image,
the top of the table was set as the first refer-
ence plane π1 (plane 1○) and one of the four
corner points of the A4-size paper on the table
was set as the origin of the world coordinate sys-
tem. From the correspondence of the four corner
points, homography was calculated. Using ref-
erence height h1 = h2 = 21.0[cm] shown in the
figure, the projection matrix P was estimated ac-
cording to proposition 1. In addition, using the
estimated projection matrix, space plane 2○ was
estimated from intersection line image l12 and
proposition 2, space plane 3○ from intersection
line image l23 and proposition 2. Moreover, space
plane 4○ was estimated from intersection line im-
age l24 and each of two kinds of clues: propo-
sition 3 (D = 35[cm] shown in the figure) and
proposition 5. In case using proposition 5, ELSD
method[6] of V.pǎtrǎucean et al. was used to ex-

Figure 6: Test image 2.

tract imaged circle (i.e. ellipse) C automatically,
and imaged center point mc was specified manu-
ally (see Fig.5). Then, spatial distances D1, D2

and D3 between two points were estimated using
the specified space planes 2○, 3○, 4○ and proposi-
tion 7. The result was shown in Table 1. The true
values in the table were the values obtained by
measuring actual objects manually. Note that D3

indicates the distance measured from the right-
upper corner of the frame to the point on the
intersecting line of floor and gray shelf. (The
lower point locates near the tip of the leg of the
table, so the line D3 breaks through the desk.)
The relative errors against the measured values
were also placed in the table. From the values in
the table, we can confirm that the result is valid.
Our experiment showed that dimensions difficult
to measure in actual space, such as D3, could be
estimated by using our method.

Subsequently we had another experiment
shown in Fig.6 where a part of the building en-
trance was enlarged. This figure shows the scene
where a blue coffee can was placed on the slope
(plane 4○) intersecting with the ground (plane
3○) obliquely. One step of the stairs was set as
the first reference plane π1 (plane 1○) and pro-
jection matrix P was estimated from the A4-size
paper placed on the step and reference height
h1 = h2 = 21.0[cm]. Using the estimated pro-
jection matrix, space plane 2○ was estimated
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Table 1: Estimation result of test image 1

Ground truth Estimation results with our method
Using Prop.3 Relative error [%] Using Prop.5 Relative error [%]

D1 [cm] 24.1 24.2 0.42 24.6 2.0
D2 [cm] 138.8 142.9 3.0 142.3 2.4
D3 [cm] 144.5 147.4 2.0 148.6 2.8

Table 2: Estimation result of test image 2

Ground truth Estimation results with our method
Using Prop.4 Relative error [%] Using Prop.6 Relative error [%]

D1 [cm] 14.2 14.1 0.70 14.0 1.4
D2 [cm] 40.2 40.8 1.5 41.1 2.2
D3 [cm] 70.1 71.1 1.4 71.3 1.7

from intersection line image l12 and proposition 2,
ground plane 3○ from intersection line image l23
and proposition 2. The slope plane 4○ was esti-
mated from intersection line image l34 and each of
two kinds of clues: proposition 4 (θ = 90◦ shown
in the figure 4) and proposition 6, and space plane
5○ was estimated from intersection line image l45
and proposition 2. Here, ELSD was used again
to extract imaged circles C1 and C2 necessary for
using proposition 6 The result of estimation of
spatial lengths D1, D2 and D3 from the image is
shown in Table 2. Also in this experiment, the
errors were not so large and the valid result was
obtained.

Note that there are many parallel lines in space
plane 4○ of Fig.6. Thus in this case, Wang[4] et
al. method is also available to estimate plane
4○. For example, using a pair of lw1 and lw2, the
vanishing point for the plane 4○ could be deter-
mined. Using this, lengths D1 and D3 could be
calculated as 13.6, 68.7[cm], and the relative er-
rors are 4.2, 2.0[%], respectively. In their method,
estimation accuracy is a little bit lower than our
method. This is caused the plane 4○ was not
properly estimated since the calculated position
of the vanishing point was far from the center of
the image. In a similar case, known angle or two
circle clue of our method may also be successful.

4Note that we have only to solve the quadratic equation
since θ = 90◦.

7. Conclusion

In this paper, we described the method to esti-
mate a space plane using some clues appeared
in a single uncalibrated image and to extract 3D
information according to the clues. In particu-
lar, we showed that an arbitrary plane inclining
against a reference plane could be estimated from
four new clues: a known length on the plane, a
known angle on the plane, a true circle and its
center point on the plane, and two true circles on
the plane or its parallel ones. From the evaluation
experiment with real images, the effectiveness of
our method could be confirmed, while we found
an issue that in the method using proposition 3,
4, or 6, where significant digits are canceled in
the process of solving quartic equations and the
precision of solution is lowered. There is another
issue that the performance of our method greatly
depends on detection precision for lines and el-
lipses in an image. Moreover, it is necessary to
examine in detail which clue is superior and ef-
fective for what kind of case using more general
or actual examples. Also it is need to study and
discuss the merits and demerits comparing our
method with such as Wang[4] et al. method. We
will study these issues further in the future.

References

[1] R.Hartley, A.Zisserman, Multiple view ge-
ometry in computer vision, Cambridge Uni-

– 28 –



The Journal of the Society for Art and Science, Vol.15, No.1, pp. 20 – 31 (2016)

versity Press, 2004.

[2] G.H.Wang, H.T.Tsui, Z.Y.Hu, and F.C.Wu,
Single view measurement on space plane,
Journal of Computer Science and Technol-
ogy, Vol. 19, No. 3, pp. 374-382, 2004.

[3] A.Criminisi, I.Reid, and A.Zisserman, Sin-
gle view metrology, International Journal of
Computer Vision, Vol. 40, No. 2, pp. 123-
148, 2000.

[4] G.H.Wang, H.T.Tsui, Z.Y.Hu, and F.C.Wu,
Single view metrology from scene constrains,
Image and Vision Computing, Vol. 23, No. 9,
pp. 831-840, 2005.

[5] G.H.Wang, H.T.Tsui, Z.Y.Hu, and Z.Ji, Sin-
gle view-based pose estimation from circle
or parallel lines, Pattern Recognition Letters,
Vol. 29, pp. 977-985, 2008.
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A. Coefficients derivation of
quartic equation in Section
4.2.1

In Eq.(12), each component of matrix Σi and vec-
tor γi is expressed as:

Σi = [(σjk)i], γi = [(γl)i] (j, k, l = 1, 2, 3).

The determinant of submatrix consisted of elim-
inating j row and k column from Σi is expressed
as |Σjk|i, each coefficient of Eq.(13) is obtained

by using Xi = Σ−1
i γi:

(α)i = a1|Σ31|i − b1|Σ32|i + c1|Σ33|i
(β)i = a2|Σ31|i − b2|Σ32|i + c2|Σ33|i
(f1)i = (α11)i(γ1)i − (α21)i(γ2)i − |Σ31|id1
(g1)i = (β11)i(γ1)i − (β21)i(γ2)i − |Σ31|id2
(f2)i = (α12)i(γ1)i − (α22)i(γ2)i − |Σ32|id1
(g2)i = (β12)2(γ1)i − (β22)i(γ2)i − |Σ32|id2
(f3)i = (α13)i(γ1)i − (α23)i(γ2)i − |Σ33|id1
(g3)i = (β13)i(γ1)i − (β23)i(γ2)i − |Σ33|id2,

where i = 1, 2, and

(α11)i = (σ22)ic1 − (σ23)ib1

(β11)i = (σ22)ic2 − (σ23)ib2

(α12)i = (σ21)ic1 − (σ23)ia1

(β12)i = (σ21)ic2 − (σ23)ia2

(α13)i = (σ21)ib1 − (σ22)ia1

(β13)i = (σ21)ib2 − (σ22)ia2

(α21)i = (σ12)ic1 − (σ13)ib1

(β21)i = (σ12)ic2 − (σ13)ib2

(α22)i = (σ11)ic1 − (σ13)ia1

(β22)i = (σ11)ic2 − (σ13)ia2

(α23)i = (σ11)ib1 − (σ12)ia1

(β23)i = (σ11)ib2 − (σ12)ia2.

Then these are substituted to Eq.(14), Eq.(15) is
obtained and coefficients are expressed as:

k4 = e20 + e23 + e26 −D2e29

k3 = 2(e0e1 + e3e4 + e6e7 −D2e9e10)

k2 = e21 + 2e0e2 + e24 + 2e3e5

+ e27 + 2e6e8 −D2e210 − 2D2e9e11

k1 = 2(e1e2 + e4e5 + e7e8 −D2e10e11)

k0 = e22 + e25 + e28 −D2e211,

– 29 –



The Journal of the Society for Art and Science, Vol.15, No.1, pp. 20 – 31 (2016)

where,

e0 = (f1)2(α)1 − (f1)1(α)2

e1 = (f1)2(α)1 + (g1)2(α)1 − (f1)1(β)2 − (g1)1(α)2

e2 = (g1)2(β)1 − (g1)1(β)2

e3 = (f2)2(α)1 − (f2)1(α)2

e4 = (f2)2(β)1 + (g2)2(α)1 − (f2)1(β)2 − (g2)1(α)2

e5 = (g2)2(β)1 − (g2)1(β)2

e6 = (f3)2(α)1 − (f3)1(α)2

e7 = (f3)2(β)1 + (g3)2(α)1 − (f3)1(β)2 − (g3)1(α)2

e8 = (g3)2(β)1 − (g3)1(β)2

e9 = (α)2(α)1

e10 = (α)2(β)1 + (β)2(α)1

e11 = (β)2(β)1.

B. Coefficients derivation of
quartic equation in Section
4.2.2

In Eq.(17), if we put si = n1 × nbi and qi =
n2 × nbi, we have the following expression:

di = µsi + qi, (i = 1, 2)

Thus, Eq.(19) is obtained by substituting this to
Eq.(18), and coefficients are expressed as:

k′4 = (s1, s2)
2 − (s1, s1)(s2, s2) cos

2 θ

k′3 = 2{(s1, s2)(s1, q2) + (s1, s2)(s2, q1)

− (s1, s1)(s2, q2) cos
2 θ − (s1, q1)(s2, q2) cos

2 θ}
k′2 = {(s1, q2) + (s2, q1)}2 + 2(s1, s2)(q1, q2)

− (s1, s1)(q2, q2) cos
2 θ − (q1, q1)(s2, s2) cos

2 θ

− 4(s1, q1)(s2, q2) cos
2 θ

k′1 = 2{(s1, q2)(q1, q2) + (q1, s2)(q1, q2)

− (s1, q1)(q2, q2) cos
2 θ − (q1, q1)(s2, s2) cos

2 θ}
k′0 = (q1, q2)

2 − (q1, q1)(q2, q2) cos
2 θ.
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