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Abstract
For point cloud data obtained from 3D scanning devices, excessively large storage and long post-
processing time are required. Due to this, it is very important to simplify the point cloud to reduce
calculation cost. In this paper, we propose a new point cloud simplification method that can maintain
the characteristics of surface shape for unstructured point clouds. In our method, a segmentation range
based on mean curvature of point cloud can be controlled. The simplification process is completed
by maintaining the position of the representative point and removing the represented points using
the range. Our method can simplify results with highly simplified rate with preserving the form
feature. Applying the proposed method to 3D stone tool models, the method is evaluated precisely
and effectively.
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1 Introduction

The better the performance of 3D scanning
devices[1] becomes year by year, the greater the
number of generated point clouds will be. For
some post-processing in the reverse engineering[2,
3], however, a large number of scan points will
greatly consume the storage capacity for the pro-
cess and the longer processing time is required.
Simplification procedure for such point clouds is
an efficient solution to these issues[4].

Point cloud simplification is a process that re-
moves a large number of redundant points and it
keeps the feature points representing 3D model
sharp feature and boundaries. Currently, a lot of
point cloud simplification algorithms have been
developed. The algorithms are roughly divided
into two categories: mesh-based methods and
point-based ones. Simplification based on poly-
gon meshes requires reconstruction of triangular
meshes from a point cloud and then redundant
points are removed[5, 6, 7]. In contrast, simpli-
fication based on points does not require recon-
struction of a mesh model and it only relies on the
information of points to simplify a point cloud.

On account of large amount of data to be pro-
cessed and high computational complexity, the
execution time of mesh-based simplification al-
gorithm is extremely long[5]. In addition, tri-
angular mesh reconstruction from a point cloud
is very complicated. Therefore, the point-based
simplification algorithm is applied more widely at
present.

In this paper, we propose a new point
cloud simplification algorithm based on curva-
ture of points. Our simplification can be per-
formed by using the pre-processing of Chida’s
method(see section 2.2). Simplification evalua-
tion is optimized to find adjacent flakes with their
method[21].

2 Related Work

2.1 Previous Simplification

The simplification algorithms based on point
clouds have several typical methods. These meth-
ods are not efficient or available for stone tool

models. Lee et al.[8] present a 3D point cloud
simplification method by using 3D grids. Pauly
et al.[9] introduced and analyzed different strate-
gies for surface simplification of geometric models
from unstructured point clouds. Moenning and
Dodgson[10, 11] devised a coarse-to-fine uniform
simplification algorithm with user-controlled den-
sity guarantee, based on the idea of progressive
intrinsic farthest point sampling of a surface in
point clouds. Lee et al.[13] presented a novel
simplification method by adopting the Discrete
Shape Operator to find the weight of the features
of 3D models. Peng et al.[15] proposed a new sim-
plification algorithm based on feature extraction
for unstructured point clouds with unit normal
vectors.

In addition, the previous simplification meth-
ods also have their own defects. For example,
Song et al.[12] studied a global clustering point
cloud simplification approach by searching for
a subset of the original input data set accord-
ing to a specified data reduction ratio. In their
method, a global optimal result is obtained by
minimizing the geometric deviation between the
input point sets and the simplified ones. But
when the number of points is reduced to become
too small, the approximated point-to-surface dis-
tances may no longer get accurate values, and it
is hugely time-consuming. Thus, it is inefficient
for a large number of our stone tool models. Miao
et al.[14] proposed a curvature aware re-sampling
approach based on an adaptive mean-shift clus-
tering scheme to simplify point clouds. An adap-
tive mean-shift clustering scheme is designed to
generate a non-uniformly distributed simplifica-
tion result. While it is difficult to incorporate
the simplified geometric error in their algorithm,
its simplified rate is low. Thus, it is hard to ob-
tain a consistent error result for each stone tool
models. Shi et al.[16] presented a new adaptive
cluster subdivision simplification method using
k-means clustering according to the two factors:
user-defined space interval and normal vector tol-
erance. For stone tools, however, flake surfaces
are smooth and the others may be very rough.
Thus, the ridge lines represented by flake surfaces
are deleted when user-defined parameters become
large in order to raise the simplified rate. Further-
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more, these methods are not show the evaluation
of normalized distance, therefore the simplified
results may not satisfy the requirements of our
follow-up studies.

2.2 Search of Joining Material

Chida et al.[21] are studying on a method to
search adjacent flake surfaces on stone imple-
ments for generating a joining material. In their
method, a point cloud has to be simplified with
maintaining form features to extract edges. Since
the method[21] is based on polygon-based ap-
proach, it is necessary to generate a polygon mesh
from a point cloud. In addition, the method[21]
is to search an adjacent stone tool through the
geometric matching score of flake surfaces. In
general, however, since stone tools with match-
ing flake surfaces are simplified respectively, the
matching score is low.

For a simplification algorithm of a point cloud,
it is important to evaluate the simplification er-
rors. In general, the geometric errors between the
original point cloud and the simplified one should
be measured, such as the maximum error and the
average error[9, 14, 16].

Our method, however, will be used in search-
ing matching adjacent flake surfaces. Stone flakes
are assembled on the same stone core and the po-
sition and posture of the adjacent flake surfaces
are restored to form a joining material of stone
tools[21]. When flake surfaces are matched and
the candidates for adjacent surfaces are detected,
a threshold value of the normalized distance[22]
is a very important parameter for selecting the
optimal flake surface.

Then, the normalized distance is employed to
evaluate the simplified result in this paper. The
normalized distance D between the original point
cloud PC and the simplified one PC ′ is measured
by the following equations:

di = (Vi − gi) · ni (1)

D =
1

S

n∑
i=1

(di)
2 (2)

For each point Vi ϵ PC, the geometric error
is distance di between original point Vi and its

Figure 1: Normalized distance

corresponding triangle Ti in simplified point cloud
PC ′. Assuming that ni is the normal vector of
Ti and gi is the geometric center of Ti, di can be
calculated by equation(1). In order to get a valve
that does not depend on a polygonal mesh area
obtained from a point cloud, the sum of (di)

2 is
divided by the sum of triangular areas that belong
to PC ′ like equation(2). Since a polygonal mesh
is required in equations (1) and (2), the simplified
point cloud is temporally reconstructed by the
method described in [17].

3 Our Simplification Method

In this paper, a point cloud is simplified by the
mean curvature of points. The flowchart of the
method is shown in Figure 2. Firstly, the mean
curvatures of points in a point cloud are com-
puted. After that, all points in the entire point
cloud are sorted in descending order of the mean
curvatures. Then the segmentation range of the
point with the maximum mean curvature is cal-
culated. Next, the points in the point cloud in
this range are removed. Finally, the point with
the second-largest mean curvature in the rest of
the point cloud is taken and the steps described
earlier are repeated until all points in the point
cloud are processed. The simplification process is
completed.

3.1 Curvature Calculation of Point Cloud

For curvature estimation of point cloud, sev-
eral algorithms are proposed[18, 19]. In [20], a
method to calculate the curvature of the point
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Figure 2: Flowchart of our algorithm

cloud is proposed. Specifically, the method rep-
resents shape features of the valley and the ridge
lines by a frequency-domain. In addition, the
method can be applied to noisy non-aligned point
clouds. In our method, we calculate the princi-
pal curvatures of a point cloud according to the
method[20].

Each point pi of an input point cloud is pro-
cessed as shown in Figure 3. First, the two
principal directions of pi are selected from three
eigenvectors and calculated by the principal com-
ponent analysis(PCA), according to K nearest
neighbors of pi. In the experiment, the size of
neighbors K is set as 30. Let e1, e2, e3 be the
eigenvectors of PCA, corresponding to the eigen-
values λ1, λ2, λ3 (λ1 ≦ λ2 ≦ λ3). Eigenvector
e1 estimates the normal vector of pi, eigenvectors
e2 and e3 estimate the principal directions of pi.
Thus, a local coordinate system (O′x′y′z′) can be
constructed at point pi, the axes lie on O′z′, O′y′

and O′x′ along the eigenvectors e1, e2, e3 respec-
tively.

The point pi and its K nearest neighbors are

Figure 3: Mean curvature calculation in our
method

Figure 4: Equidistant sampling values generated
from nearest neighbors of pi

transformed to the local coordinate system and
approximated by a truncated Fourier series in
each principal direction. For example, a equidis-
tant sampling points set ul (l = 0, ..., N − 1) is
created along the O′x′ axis to calculate principal
curvature kix (N is set as 8 or 16 generally), as
shown if Figure 4. The set center at pi and its
step size is chosen to be smaller than the aver-
age value d of the distances between each point
of the input point cloud and its closest point. For
each point ul, its closest points qj (j = 0, 1, 2, 3)
are selected from K nearest neighbors of pi in the
four spaces separated by plane x′O′z′ and plane
x′O′y′. The sampling value g(ul) is computed
by equation (3), where, d(ul, qi) is a distance be-
tween ul and pi and zqi is the z value of qi.
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g(ul) =

4∑
i=1

1
d(ul,qi)∑4
j=1

1
d(ul,qi)

zqi (3)

Next, the Fourier coefficients are derived
by Fast Fourier Transform(FFT) according to
the sampling values, as equation (4), where
Re(FFT (g(ui))) and Im(FFT (g(ui))) are real
and imaginary parts of the coefficients of
FFT (g(ui)).

Z

a0 =
1

N
Re(FFT (g(u0))),

ai =
2

N
Re(FFT (g(ui))), (i = 1, ...,

N

2
− 1),

ai =
2

N
Im(FFT (g(ui))), (i = 1, ...,

N

2
− 1).

(4)

After that, with the expressions of curvature
and truncated Fourier series as equation (5), the
principal curvature kix of pi is computed from the
approximated curves as equation (6), and kiy can
be computed in the same way along O′y′ axis.

f(x) ≃ 1

2
a0+

N∑
n=1

ancos
nπx

L
+

N∑
n=1

bnsin
nπx

L
(5)

kix = −
π2

L2

∑N
n=1 n

2an

(1 + ( πL
∑N

n=1 nbn)
2)

3
2

(6)

Finally, mean curvature Hi of pi is calculated
by the average of the two principal curvatures kix
and kiy as the equation (7):

Hi =
1

2
(kix + kiy) (7)

3.2 Simplification Based on Curvature

For a 3D model, the feature points charac-
terize sharp edges and surface boundaries that
have large curvature. On the other hand, the
points with small curvature, which are not feature
points, are redundant to represent the surfaces of
a model. A segmentation range of a point based
on the mean curvature is defined by the circles as
shown in Figure 5, which can represent the corre-
spondence with the range. Thus, if representative
points are selected according to the mean curva-
ture values, the point cloud can be simplified by

removing the points with small curvatures and
maintaining ones with large curvatures.

Firstly, all points in a point cloud are sorted by
the absolute value of their mean curvatures, and
the average mean curvature H of the point cloud
is calculated as equation (8), H will be used to
calculate the segmentation range later.

H =
1

n

n∑
i=1

|Hi| (8)

Next, starting from the point pi of current max-
imum curvature, the radius of its segmentation
range ri is calculated by equation (9).

ri = α · H

|Hi|
(9)

According to equation (9), segmentation range

ri can be determined by H
|Hi| . Therefore, in the

regions with larger curvatures the range is small,
while in the regions with smaller curvatures, the
range is large as shown in Figure 5. Additionally,
users can control the scale of segmentation range
by a positive value α. Points inside the circle
of ri are the target ones for local simplification.
The number of points in a simplified point cloud
can be estimated by α. Furthermore, in order to
keep the balance of the simplified point clouds,
the minimum value of the range can be arbitrarily
set by users. In our implementation, this value is
set to α/3.

Figure 5: Segmentation range

After the representative point and segmenta-
tion range are determined, other points in the seg-
mentation range are removed. Firstly the points
in the range are searched by using the k-d tree[25].
The computational complexity of k-d tree con-
struction, insertion and deletion is high while
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search is low. Due to this complexity, deletion
of elements in the k-d tree is replaced by marking
elements in the list. Therefore, the k-d tree of a
point cloud needs to be built once in the begin-
ning and deletion operation need not be repeated
for other point clouds. Thus, the list and the k-d
tree are retained in the memory during the oper-
ation and points can be searched in the k-d tree
and marked in list, as shown in Figure 6.

Figure 6: Removal of redundant points

After the points in the range are marked, the
segmentation range of the next unmarked point
is calculated, which has the currently maximum
mean curvature current. Repeat these steps until
all points in the point cloud are treated.

3.3 Evaluation

In the study of joining material searching[21], the
normalized distance of each pair of flake surfaces
is employed to evaluate the matching score for
similarity. Since our new simplification method
is used in the pre-processing stage of flake sur-
face searching, the normalized distance for each
flake surface of a stone tool between the origi-
nal point cloud and the simplified one should be
measured in the same manner as the evaluation of
simplification result. Our method prevents from
increasing normalized distance because removed
points have small curvature. Therefore, the shape
of simplified model is suitable for [21] by the pro-
posed method.

4 Experimental Results and
Limitation

We have implemented our algorithm using C++
and OpenGL, and tested on a PC with an In-
tel Core i5-3470 CPU and 8.00GB memory. The
simplified point clouds are reconstructed by the
method described in [17]. The original point
clouds and the reconstructed simplified ones are
displayed.

4.1 Clustering Result

(a) Original point cloud (b) Result of clustering

Figure 7: Result of clustering

Figure 7 shows the stone tool of
No.L0197A0180 model and the result of clus-
tering for this model, obtained by the proposed
method. In the figure, the circles of different
colors represent different clusters. Because of
color matching, the different adjacent clusters
may have the same color. The information of
the model surface is shown clearly in Figure 7
(a). As the two figures are compared, we can
clearly see that small clusters are placed on the
boundaries and ridges of the model, while large
clusters are placed for faces. So the method can
maintain the contour information of the model
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and the redundant information can be removed
efficiently.

4.2 Simplified Results of Our Method

Figure 8 shows a group of No.L0197A0151
model’s simplified results (triangulated) by the
new method with different segmentation ranges.
The number of original points was 319K (a) and
the numbers of simplified ones were 160K (b),
27K (c) and 9K (d). These examples demon-
strated that the features of model were well main-
tained by the proposed method, even though the
number of points was reduced to 2.84% of those
in the original point cloud.

Figure 9 shows three stone tool models simpli-
fied by using the proposed method. The number
of points of No.L0197A0178 model was reduced
to 3.73% of those in its original model, that of
No.S008A00010 model was reduced to 5.63%, and
that of the No.S008A0003 model was reduced to
8.12%. In the right column of Figure 9, the pre-
served points of models were clearly shown by sur-
fels(surface elements proposed in [23]). The ex-
perimental results indicate that the new method
can maintain the boundaries and ridges of 3D
models.

Table 1 shows the number of original points,
the execution time of each step, the number
of preserved points, and the maximum normal-
ized distances of each flake surface. The execu-
tion times show the method is efficient. For the
matching study[21], the normalized distance of
each flake surface segmented from the stone tool
models is calculated. The evaluation results of
the maximum normalized distance indicate that
the error between simplified result and the orig-
inal point cloud is very small, and the simpli-
fied results are more than adequate requirements
of matching study[21]; that is, the new simpli-
fication method has a good effect on the pre-
processing of the matching study.

Stanford Dragon model was also tested and
shown in Figures 10. In order to provide the
standard of evaluation, the normalized average
geometric error[24, 14] was computed, shown in
Table 2. In paper [14], Dragon model was tested
and the number of simplified point cloud was

Table 2: Comparison of Dragon model.

Method Ours Miao et al.

Num. of original points 437,645 437,645

Eexecution time (sec.) 44.20 53.60

Num. of preserved points 34,861 34,049

Simplification ratio 92.03% 92.22%

Normalized average error 1.04 × 10−4 5.29 × 10−4

34,049, the normalized average error was 5.29 ×
10−4. While the normalized average error of our
method was 1.04 × 10−4. According to paper[14],
the total execution time of Miao et al. was 53.60
seconds, and that of our method was 44.20 sec-
onds. This contrast could be used as a reference
for the efficiency of our method, although they
were measured in different experiment environ-
ments. As the result, normalized average error
was smaller than one of the method[14], when
the shape was simplified as same as the number
of the model. Our method prevents from increas-
ing normalized distance because removed points
have small curvature. Therefore, the superb eval-
uation result of normalized average error is also
obtained. This example demonstrated the effi-
ciency of our method, and our method could ob-
tain good simplified results for 3D models.

(a) Original point cloud (b) Simplified point
cloud

Figure 10: Dragon

Concerning the execution of our method for
very large data, an excavated relic model shown
in Figure 11 by surfels[23] was tested. The num-
ber of points of original model was 2,277,128 and
that of the preserved points was 10,144. The total
execution time was approximately 253 seconds.
This example indicated that our method has a
good performance for big data.
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(a) Original point cloud (b) α = 0.1 (c) α = 0.5 (d) α = 1.1

Figure 8: Results of simplification with different segmentation ranges (triangulated)

Table 1: Status of three stone tool models.

Model Number of Execution time of each step (sec.) Number of Simplification Max normali-

original points preserved points ratio zation distance

File Curvature Simplification

reading calculation

L0197A0178 115030 0.522 12.676 0.353 4287 96.27% 0.0137

S008A00010 129145 0.566 12.001 0.417 7267 94.37% 0.0123

S008A0003 146214 0.688 13.834 0.508 11876 91.88% 0.0140

(a) Original point cloud (b) Simplified point
cloud

Figure 11: An excavated relic

4.3 Limitation

For a 3D model has thin flake shape as shown in
Figure 12, the feature point p1 may be removed
in the segmentation range of point p0 on the op-
posite side, when the curvature of p1 smaller than
p0.

Figure 12: Thin flake shape section

5 Conclusions and Further Work

In this paper, a new curvature-based point cloud
simplification algorithm is proposed. The seg-
mentation range is proposed for using one point
that represents the others in the range. Then
the method of removing redundant points in the
range is applied according to the order of curva-
tures to simplify the point cloud.

The normalized distance is employed to esti-
mate the error of simplified results, and the user
can control the degree of simplification by a space
interval parameter. The larger parameters can
lead to higher degree of simplification and larger
simplification errors. Experiment results show
that the proposed new algorithm can obtain ef-
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L0197A0178 (α = 0.9)

S008A00010 (α = 0.8)

S008A0003 (α = 0.9)

Figure 9: Simplified results of the new method. Left: original point clouds(triangulated); middle:
simplified point clouds(triangulated); right: simplified point clouds(surfel[23])
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ficient results that have high simplification rates
and low simplification errors.

This segmentation spherical range, however, is
not a good way for some extreme cases. There
are three types of the local shape of point cloud
: flat, rugged and ridge areas. These three types
can be expressed by principal curvatures in two
directions. Therefore, in the future, three dif-
ferent ellipsoids will be designed to calculate the
segmentation spaces according to the two princi-
pal curvatures against the different local shapes.
This will obtain higher simplification accuracy.

The basic concept of our method has already
been presented in NICOGRAPH 2014[26] and we
extended the concept in this paper. We are ex-
tremely grateful for lots of efficient advice from
the paper reviewers.
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