
The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

103

Procedural Interactive Water in Memory- and

Performance-Constrained Systems

Jens Ogniewski

Information Coding Group, Department of Electrical Engineering, Linköping University

jenso at isy.liu.se

Abstract
Particle effects are vital components of computer graphics in modern computer games. While game developers

have a choice of several different methods for particle effects on PCs and home consoles, there exist only few

solutions for games in the fast growing smartphones/tablets market. This is not only because of the more than a

magnitude lesser computational performance of the systems-on-a-chip used there, but especially due to their

even much slower memory access, which renders nearly all approaches used on standard PCs unsuitable for

smartphones/tablets.

To overcome the bottleneck of the memory access, I suggest using a procedural approach, which will be

described fully in this paper, with the example of real-time water. It is based on particle movement in 2D, but by

applying physical forces directly to the particles rather than using a pressure-field like in e.g. the popular

Navier-Stokes based methods. This has the advantage of avoiding the need for two different data structures, one

for the pressure-field and one for the particles themselves, and thus reduces memory usage significantly.

In this paper I will also present a simple way to introduce interactions with the particle effect as well as a

comparison with a low-complex Navier-Stokes based approach. To the best of my knowledge, this is the first

scientific work investigating particle effects for systems-on-a-chip, like e.g. smartphones/tablets.

Figure 1. Example images from the test-sequence using a) (left) a simple texture, b) (middle) the force-based approach as

presented in this paper and c) (right) a Navier-Stokes based method (as presented in [10]). Pictures taken from the test sequences

running on a Samsung Galaxy Note 10.1 2014 Edition.

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

104

1. Introduction & Motivation

1.1 Smartphone/Tablet Architecture
To fully understand this paper, it is necessary to be aware of the big

differences between PCs-architecture and the one of so called

systems-on-a-chip (called SOCs in the following) which are used in

basically all modern smartphones/tablets. I will therefore start with a

short comparison, based on results from the IceStorm benchmark [8],

which is available for both SOCs and PCs. It should be kept in mind

that this benchmark slightly favors the SOC GPUs since it does not use

many of the more advanced features of modern PC GPUs which are

not included in SOC GPUs.

The iPhone 5 for example reaches 5693 points in this benchmark,

which puts it in the middle-class of that generation of SOC GPUs. A

middle-class PC GPU of the same generation (the Nvidia GeForce

GTX 650 TI) reaches 118057, or more than twenty times as much. Of

course, since then SOC GPUs have become faster, for example the

more contemporary Galaxy Note 10.1 2014 Edition is (compared to

the iPhone) 2.5 faster in the same benchmark, putting it in the lower

high-end class of the last generation of SOC GPUs. On the other hand,

PC GPUs have become faster as well, a comparable last generation

high-end GPU, the NVIDIA GeForce GTX 780 TI, reaches 3.3 times

the performance of the aforementioned Nvidia GeForce GTX 650 TI.

The current generation SOC GPU NVIDIA K1 closed this gap a little

however: compared to the Geforce GTX 780 Ti it is “only” slightly

more than 13 times slower (365 GFLOPS of the K1 compared to the 5

TFLOPS of the 780 TI). Note that the K1 already uses the same

technology used in PCs, and therefore it is unlikely that the

performance difference will decrease much further.

The biggest difference between PCs and SOCs is however that in a

SOC all components are integrated on the same chip (hence the name),

and all share the same bus and memory. This means that the GPU in a

smartphone/tablet has to share these with the CPU, but also with the

modems, the touchscreen, the camera and all other active component.

On PCs however most components have their own dedicated busses

and memory. The GPUs in modern PCs for example have roughly the

same amount of memory for themselves than most SOCs use for the

whole system.

Also, the available memory bandwidth is much smaller in SOCs.

The K1 for example reaches only 17 Gb/s (shared between the GPU,

the CPU and all other components), while the 780 TI has 336 Gb/s

available all for itself, twenty times as much. This difference is nearly

1.5 times bigger than the difference in performance. It can be assumed

that the gap between computational performance and available

memory bandwidth will become larger still, since computational

performance is growing faster than available memory bandwidth.

On the other hand, the SOC architecture has huge benefits in costs

and energy savings (note that the battery development has not kept up

with the chip development), which are the driving forces behind the

current replacement of PCs by smartphones/tablets in normal

consumer households. Thus it is highly unlikely that coming

generations of smartphones/tablets will apply a different architecture.

On the other hand, this architecture and its limited memory access

unfortunately renders most PCs algorithms unsuitable for these kind of

systems. Thus, it is high time to develop algorithms optimized for the

big and fast growing smartphones/tablets market, which means

especially to minimize memory usage as much as possible.

1.2 Particle Effects
The realistic visualization of particle effects, like water, has been a

topic of much interest since the beginnings of computer graphics,

going as far back as to the beginnings of the 80s [33]. For many use

cases (like movies or computer games) a physical accurate behavior is

desirable, but not necessarily needed. It is much more important that

the designer can reach the desired effect, and, if possible, can do so

easily. For applications like computer games it is of course also

necessary that it is possible to run the method in real-time.

An often used approach are volumetric particle systems, as

described e.g. in [39]. These are divided into two parts: the simulation

of the particle movement, and the rendering of the simulated system.

The simulated particle movement takes typically place in a so called

voxel grid, which is a discretized, closed space (realized e.g. by

3D-textures) containing a certain number of cells, called voxels. Each

voxel can then contain a certain number of particles, which are moved

in accordance to a physical model like Navier-Stokes [33] or

Lattice-Boltzmann (e.g. [14] [29]). However, the memory usage

increases enormously with the resolution of the grids. Therefore,

several approaches have been suggested for effective compression of

these voxel grids, thus trading lower memory footprint for lower

computational performance. A common solution for this is to use

octrees, like e.g. in [19].

Although volumetric systems have traditionally been used

exclusively in offline methods (e.g. the water in Titanic [35]; an

overview of these methods can be found in [4]), the development in

GPU architectures in recent years has made it possible to use

volumetric particle models even in real-time applications like

computer games, at least if using a comparably modern PC or gaming

console. Early real-time PC GPU implementations include [16] and

[37], which however both concentrated on the simulation part and

included only a very basic renderer. More recent work can be found in

[6] and [9]. Still, to be able to render volumetric particle systems in

real-time, trade-offs have to be made, and the work in that area differs

mainly in how these trade-offs should be made to get the visually most

pleasing result with the best possible performance. A trivial trade-off is

of course the size of the voxel grid or the number of involved particles.

Another often use approach would be to use a 2-dimensional pressure

field instead of a 3-dimensional one, as already presented in [17]. But,

as has been shown in several publications, other trade-offs are possible

as well. [18] for example suggested a method combining a

low-frequency approximation of the particle system and a

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

105

ray-marching method for the light transport. Similar ideas can be found

in other work, like [41], were the actual light rendering is precomputed,

which allows real-time simulations of comparably large grid-sizes

using commodity PC hardware. [30] suggested a variable grid-size, so

that cells of a particular interest can have a higher resolution than

others. [34] and [13] recommend refinements to add details to

comparably coarse grid-sizes. [27] on the other hand suggested to use

offline precomputation to build a Markov-type velocity field for the

online simulation to reach real-time performance. Finally, [28] showed

how using a mathematical description of the grid (instead of an actual

grid) can be used to emulate a very high resolution grid in reasonable

computing time. This approach can be seen as a bridge to more

mathematical equation-based solutions, like e.g. [15], where water is

described purely by equations. Another approach combining

volumetric and equation based methods can be found in [2], where the

notion of wave-particles is introduced.

For the rendering of volumetric simulated liquids, often algorithms

like Marching Cubes [20] or Level Set [26] are used. Small detail can

be added by using turbulence [40] or advection (see also [22] or [32]),

which is usually derived by a random noise which is offset by a

turbulence or velocity field, which is normally done in the texture

domain. Other possibilities include to augment the rendered particles

with textures (like in e.g. [1] or [5]), or to use displacement mapping

[42] or animated heightfields [23]. A typical approach describing

interactions with such a simulated particle system can be found in [3].

Unfortunately, even the most performant PC methods are badly

suited for SOCs, mainly because of a too high memory utilization. In

current computer games on smartphones/tablets, most designers

implement particle effects through so called particle systems, which in

these cases however do not simulate particle movements. Instead, they

consist of several (often animated) billboards moving in predetermined

pattern (although a little randomness is normally introduced to get a

more realistic appearance), much like as described in [12] or [38].

Research in this area typically concentrates on how to simplify the

process to get the desired effect, like in [36] or [24]. These approaches

have very low computational complexity, but have the disadvantage of

using a comparably high amount of memory, which is fast increasing

if the effects should emulate dynamic behavior or should have very

varying looks. Considering how costly memory access is in SOCs a

more procedural approach would be much better suited to these

systems. However, the only procedural method that I am aware of that

has been applied in SOCs is to use simplified equational methods to

simulate interactions with liquids, similar as has been proposed in [15].

There have been a few papers published for volumetric rendering on

smartphones (e.g. [21] or [31]), which however omitted the simulation

part needed for animated particle systems. Also, the reported frame

rate is much too low for real-time applications like games.

A solution would be to use a 2-dimensional approximation to

emulate a full volumetric system. This is based on the observation that

a fairly good result can be achieved solely based on the number of

particles in front of the observer, i.e. without knowing their exact

position in depth, only knowing how many particles any possible ray

from the observer through the particle volume would hit. Thus, the

demands on memory and computational power can be decreased

significantly, enough to be able to run such systems even on older

SOCs in real-time. A related approach was described by [17] and [10],

using a simplified Navier-Stokes solver. Here however I suggest to

replace the Navier Stokes pressure field by a low complex force-based

physical model, thus saving the pressure field and hence most of the

required memory (since the pressure field ideally has to be at least four

times bigger than the one containing the particles). The simulation step

applied in this paper was already described in [25], which to the best of

my knowledge presents the first work where particle effects like

smoke, fire and water were generated on SOCs by a purely procedural

approach, i.e. without the use of precomputed data like textures, thus

minimizing memory usage. This paper will give a short description of

the simulation process, but concentrate on rendering aspects, with a

focus on water rendering. Furthermore, a comparison is given with

texture based methods as well as with the Navier Stoke based solution

described in [10]. This paper is based on earlier work I presented at

NICOGRAPH 2014 [43].

Figure 2: Particle fields derived using different approaches: a) (left) using a Navier-Stokes pressure field of equal size as the particle field, b) (middle)

using a Navier-Stokes pressure field which is 4 times bigger, and c) (right) using a force-based approach as described in this paper. Note that the

same algorithms were used to produce these pictures as in the test-sequences

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

106

2. Particle Simulations
As was already mentioned, memory usage in SOCs should be

minimized as much as possible, which can be achieved by simulating

the particle movement in 2D rather than in 3D. The structure

containing the particles will be called particle-field in the following. To

be able to save the field in one color channel of a texture, the maximal

number of particles in a cell will be limited to 255.

In [10] particles are moved using a Navier-Stokes pressure field,

which is set to be 4 times larger than the particle field. Own

experiments showed that using a smaller pressure field leads to very

slow movement, and tends to concentrate the particles in a few

locations, probably because of the high smoothness of the pressure

field, see also figure 2a). For comparison, figure 2b) shows the same

Navier-Stokes based approach using a pressure field 4 times larger

than the particle field and 2c) the result of using the approach proposed

in this paper. Note that 2b) and 2c) use the actual algorithms used in

the later described test sequences.

If the large pressure field is omitted to minimize memory footprint,

the particles have to be moved in a different way, which can be done

by applying forces directly to the particles. This will be called

force-based approach in the following.

Physically, the movements of particles are the result of a number of

different forces, like inertia (i.e. along the current trajectory), diffusion

(from places where a lot of particles reside to places where fewer

particles are), and external forces (e.g. gravity). These are the three

forces which are included in the approach described here, along with a

random force to emulate small scale effects. This method has the

additional advantages that the simulation can be easily controlled by

choosing the blend-weights between the different forces, thus

simplifying the generation of the desired effects, as well as that the

simulation can be done in one step, unlike Navier-Stokes where the

pressure field has to be updated first before the particles can be moved.

The particles are only moved from one cell to the 8 directly adjacent

cells, and the directions are not calculated for each particle but for all in

a cell at once, both to save computations. This can of course lead to

very monotonous movements where many particles travel along the

same path. To conquer this, I suggest moving particles not only in the

exact direction of the force, but even in nearby direction, which can be

seen as using a more stochastic approach. To determine how many

particles should be sent in which direction, e.g. a gauss distribution

could be used. I chose however to use a cosine function instead, since

this means that the number of particles which should move in one

direction can be calculated by a dot product between this direction and

the force in question, which can be computed very fast. This is possible

since all forces and the candidate directions can be easily described as

vectors, with the exception of diffusion, which is simply expressed by

the differences in the number of particles in neighboring cells.

Thus, we arrive at the following equation to describe the movement

along the direction D from the center cell to a neighboring cell:

,

with Fi the different force vectors, wi and wd the different

blendweigts, as well as p and pi the number of particles contained in

the center cell and the number of particles contained in the neighboring

cell the direction vector points to. The second term calculates the

movement due to diffusion, the first the other forces. For the random

movement we need to evaluate the first term two times, since each of

the two cells has its own random vector. Note that Mp will become

negative if particles should be moved to the center cell, rather than

away from it. I considered only the 8 nearest cells, i.e. a 3x3

neighborhood. The division by the length of the candidate direction in

the beginning of the equation is done to compensate for the higher

distance to the cells in the corners of the neighborhood.

To make sure that no particles are created or destroyed, not more

particles should be moved from a cell than reside in it, and no particle

should be moved to a cell that is already full. Thus, it might be

necessary to scale the number of particles that move between two

neighboring cells. This is done by using scale factors applied to all

particle movements involving the cells in question, to make sure that

the proportions of the particles traveling in the different directions will

not be changed by this scaling.

To be able to calculate the inertia in the next simulation step, the

velocity of the particles in the current step has to be saved. It was

decided to save the average velocity of all particles contained in the

cell instead, to save both on computations and required memory; in

fact it could be saved in 2 color channels of the particle field.

The different forces are shown in figure 3, and the output of a

simulation using a Navier-Stokes pressure field as in [10] is given for

comparison. As can be seen, the particles spread out more and faster

using the force-based approach. This is because each combination of

force and candidate direction is evaluated individually, thus allowing

particles to move in many different directions in the same simulation

step. In case of Navier Stokes the particle movement is calculated in

the same way (by using dot products), but the pressure field provides

only one vector, thus the number of directions the particle move in in

each step is limited.

It should be pointed out that it is possible to get a result that looks

similar to the Navier-Stock result with the force-based approach. It

seems that the force-based approach provides a higher flexibility than

Navier-Stokes.

3. Rendering
Although in some situations a 2-dimensional particle effect might be

enough (like e.g. a fire in a fireplace), in most cases a 3-dimensional

one would be preferable. Since the simulations have been done purely

in 2D, this 3-dimensionality has to be introduced in a different way.

[11] suggests to add an additional field during simulation to get a so

called 2.5-dimensional effect, which however introduces an additional

data structure and thus increase the memory footprint significantly.

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

107

Figure 3: Example to illustrate the different forces used in the

suggested approach. The size of the particle fields were 32x32, and the

blendweights were 0.1 for the external and random forces, and 0.15 for

the others. Note that these parameters have been chosen solely to allow

for a good demonstration.

1st row: a) (left) input particle field,

b) (right) movement according to entropy,

2nd row: c) (left) movement along a common external force,

d) (right) random movement,

3rd row: e) (left) all three forces combined,

f) (right) with additional inertia,

4th row: g) (left) same as f),

h) (right) Navier-Stokes as in [10] for comparison

Instead, the particle field could be used as a displacement map (like

e.g. in [42]) of an arbitrary object, i.e. the object will appear thicker

where more particles reside, and thinner were fewer are. This assumes

that the number of particles in the voxels in the core of the object

doesn't change during simulation, which is a reasonable simplification.

This method has the additional advantage that the designer can choose

roughly which shape the effect should have.

For water, this displacement is trivially done by starting with a flat

surface, than adding to the y-component of each vertex the value found

in the particle field at its positions, multiplied with a constant. Similarly

the normals needed for specular lightning can be calculated in the

fragment shader: by calculating the heights in neighboring points, and

use these to calculate the normal of the plane spanned by the

neighboring points and the point we are currently coloring. Because

the reflection of a water surface is directly proportional to the amount

of light that will pass through its surface, the specular lightning can be

used for transparency calculation as well.

Since the vector field is treated in a wrap-around fashion (i.e.

particles leaving the field on one border will enter it immediately on

the opposite border, this is done to keep the number of particles

contained in the field constant), it is possible to tile this height field, i.e.

it can be rendered several times directly adjacent without any visual

seems. This makes it possible to simulate a large body of water using

one single, comparably small particle field. Due to the lightning effects

which vary depending on the pixel position, the repeating patterns are

barely visible when the water is moving. To make the reappearing

patterns even less visible, the texture coordinates and the vertices used

for displacement mapping could be spread in a less regular pattern as

was done in this work.

To further minimize the size of the particle field and improve the

effect, local advection (like in [22] or [32]) can be used for the small

scale effects. Since the average velocity vectors are already included in

the particle field (to be able to calculate the inertia), it makes perfect

sense to use them as turbulence for the advection as well. The degree

of advection can be varied by the distance between the pixel in

question and the camera, i.e. a stronger effect can be used when it is

near the camera, and a lesser or even none at all if it is farther away. In

this way a mipmapping like effect is achieved. The advection process

is visualized in figure 4.

For absorption and refraction effects, the scene would normally

needed to be rendered at least twice. Since this would add heavily to

both the computational burden and the memory footprint, this should

however be avoided. Instead, I suggest here to use an approximated

light transport based on ray-casting. Outscattering, absorption and

inscattering as needed for light transport could be approximated locally

using only the number of particles in the neighboring cells. Assuming

a constant number of particles in the voxels in the center (as described

earlier), outscattering and inscattering cancel each other out and

therefore the approximated function only depends on the distance the

light traverses through the system. This allows to introduce the

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

108

absorption effect of the water in the following way: when a pixel

belonging to the bottom of the river is rendered, a ray is casted from it

to the camera position, and it is determined where it would hit the

water surface assuming an average water height (i.e. the water surface

which has been displaced with the number of simulated particles

divided by the number of cells). The length of this line can then be

used to calculate an approximated absorption and to darken the pixel

on the ground accordingly.

Figure 4: Example to illustrate the advection process: a) (left) advection based on the distance to the camera, b) (right, up): close-up, c) (right, down):

water without advection, d) (right, middle): water with advection. Pictures taken from the test-sequence running on the Galaxy Note, using the

force-based approach, however with the transparency of the water turned off.

Furthermore, the normal found in this intersection point with the

water surface, together with the length of the line as used for the

absorption, can also be used to calculate a first degree approximation

of refraction effects. This could be used in two different ways: 1. to

move under-water vertices to where they appear to be and 2. to modify

texture accesses accordingly. While the first method can lead to an

overall more correctly looking scene, many vertices would be needed

to get an accurate result, especially for the typical undulated lines

caused by fast moving water. A good solution would therefore be to

combine both methods. This is an approximate solution, however in

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

109

practice the accuracy lost should very hardly be visible, at least in the

case of fast moving water.

Refraction and Absorption are visualized in figure 5.

Figure 5: Example to illustrate absorption and refraction. a) (up, left): ground rendered without absorption or refraction, b) (up, right) ground rendered

with absorption and refraction, c) (down, left): close up of ground with absorption and refraction, d) (down, right): ground and water rendered

without absorption or refraction, e) (down, middle) ground and water rendered with refraction and absorption. Pictures taken from the test-sequence

running on the Galaxy Note, the force-based approach was used.

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

110

Finally, interaction with the water can be easily introduced using an

equation based method. For example, the typical ripples caused by an

approximate spherical object hitting the water surface can be described

by a number of rings, which can be calculated by the combination of

two functions: the shortest distance of the pixel in question to the

center ring, and a wave function (e.g. a cosine) to introduce a number

of ripples. This whole method can be controlled by 4 different

parameters: the 2D coordinates of the center of impact, the current

radius of the center ring (which will grow over time), and the force of

the impact (which will be reduced over time). To further increase the

phasing-out effect, the used wave function should be steeper directly

after the impact, and more spread out later. The results of these

simulated impacts are visualized in figure 6. Note that it is of course

possible to have interactions between the ripples of different impacts.

Furthermore, note that these interactions influence the displacement

mapping, the local normal, and the turbulence used for the advection.

This method introduces a high number of additional computations

and is therefore not suitable for a high number of interactions, as will

also be demonstrated in the evaluation. However, it shows how easily

an additional method for water interaction can be added, like for

example equation-based approaches as described in e.g. [3], which

have become a popular method in games for smartphones in recent

years. These two methods complement each other rather well, since

equation-based systems are very good in modeling interactions, but

can get computational expansive if they have to simulate the normal

water flow with a high visual quality. The method described in this

paper on the other hand handles normal water flow with very little

resources, but has to rely on an additional method for interactions, as

for example the simple water drops described earlier in this chapter.

Figure 6. Example for a simple way to introduce interaction with the water surface. a) (up, left): distance function to the center ring, negative values

are set to zero, b) (up, right) cosine function to introduce several ripples, c) (down, left) the two functions blended together, d) (down, right): the

ripples blended with the water surface (with additional weights applied based on the force of the impacts and the time since they occurred). Pictures

taken from the test-sequence of the force-based approach on the Galaxy Note; the transparency was turned off to give a better view of the effect.

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

111

4. Evaluation
For an evaluation, the described algorithm was implemented on an

iPhone 5 (representing a middle-class SOC GPU from third-to-last

generation) and on a Samsung Galaxy Note 10.1 2014 edition (which

includes a last generation lower high-end GPU). The screen resolution

of the iPhone is 1136x640, the one of the Samsung 2560x1600. Note

that these native resolutions were used in the test-sequences as well.

The scene consists of 420 vertices for the ground and 8820 vertices

for the water, and is only nearly completely inside the viewing fustrum.

However, no techniques like fustrum culling etc. have been used. The

ground is rendered using a blending of two different textures (using the

y-positions as blendweights), with a size of 128x128 each.

Since a refraction in the vertex shader added little to the result (due

to the comparably low number of vertices used in the ground as well as

its very uniform appearance), this was not included. It would also be

very difficult to introduce this to the iPhone, since its operating system

did not permit texture access in the vertex shader. For this reason, to be

able to use the displacement mapping on the iPhone the particle fields

had to be read back to the CPU and send to the vertex shader as

uniforms. This is possible since the texture spreads evenly over 4x8

vertices, i.e. only 32 values have to be sent to the vertex shader.

However, it is not possible to read only single values back to the CPU,

so the whole texture has to be read back, thus heavily increasing the

number of memory accesses.

For the noise, it would be possible to use a noise algorithm like e.g.

[7], but even these highly optimized solutions proved to be too slow.

Therefore it was chosen to use a noise texture instead, which is a

texture that contains random values and is a common solution. This

has the additional advantage that the noise can be custom tailored for

the effect that should be reached, e.g. in the case of fire concentrating

high values in one point and lesser values in the rest lead to more flame

like structures. The disadvantage of this method is of course that it

introduces an additional data structure, but it turned out that the

random texture can be chosen to be relatively small, because:

1. normally the random texture should retain a certain

smoothness, which can be approximated by using a small

texture with completely random values and scaling it up at

runtime using the inbuilt texture interpolation.

2. The texture can be repeated several times instead of using a

texture that is several times larger.

Note that this proved to be sufficient for the rendering especially

since the particle systems move too fast for the human eye to depict all

the details, and that it has the big advantage of having a very low

computational complexity and a comparably small memory footprint

at the same time.

Since the particle field only uses 3 color channels (one for the

particles and two for the average velocity), the random- texture can be

added to it as the alpha-channel, and thus the system can be rendered

with advection using only one texture. However, it proved to be

beneficial to add a second texture containing precomputed normals

based on the current particle field, mainly because this reduces texture

accesses: only one texture access is needed to determine the normal

instead of at least two which would be the case if the normals were

calculated at runtime.

All together three different methods were implemented: one using

the force-based approach, one using Navier-Stokes as in [10], and one

using a single texture. If not stated otherwise, the rendering for all was

done in exactly the same way.

The size of the single texture was 256x256 which is a compromise

between a small size and reaching a detail level comparable to the

advected particle fields. No advection could be used in case of the

single texture due to the absence of an animated turbulence field. The

free three color channels of the texture were used to include the local

normal vectors for a similar lightning and refraction calculation as in

the procedural methods (Navier-Stokes as well as the force-based

method). Note that the detail of the single texture is less in the places

where maximum advection is used, but too high in the places where

only low advection occurs..

Table 1. Performance results from the test-sequences running on a

Galaxy Note. All values given in Frames/sec．
 Simple

Texture
Force-based Navier-Stokes

Ground 119.9
Only water 99.2 88.1 77.8

Incl.
Interactions

62.5 49.0 47.5

Incl.
refraction/
absorption

32.2 41.6 41.0

Incl.
Interactions

and refraction/
absorption

27.8 31.0 30.0

Table 2. Performance results from the test-sequences running on an

iPhone 5. All values given in Frames/sec．
 Simple

Texture
Force-based Navier-Stokes

Ground 115.2
Only water 121.9 85.7 83.5

Incl.
Interactions

50.2 29.2 28.7

Incl.
refraction/
absorption

18.9 43.7 42.4

Incl.
Interactions

and refraction/
absorption

14.1 22.5 22.3

This could of course be avoided by using mipmaps, however at the

cost of adding texture data. In a similar way the movement of the water

could be implemented by using several textures, which could also be

used to introduce more variations to the movement. It is however very

doubtful that this would reach a higher performance than simply

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

112

continuously increasing the texture coordinates, which was therefore

chosen for the comparison

For a simulated interaction with the water, two different animated

impacts have been added, each of which is replaced with a new one as

soon as it becomes invisible. All their parameters are chosen randomly,

but it is made sure that the centers of the impacts lie inside the viewing

fustrum. It was chosen to include two to be able to emulate interactions

between them as well. Note that these impacts influence both the

normals for the lightning and transparency calculation as well as the

displacement mapping. In case of the two procedural approaches they

also influence the advection.

The performance was measured in 4 different test-sequences:

 Only the water itself, i.e. only displacement mapping and

heightmapping. In case of the procedural approaches the

simulation of the particle fields and the advection was added in

the measurement as well.

 The water itself (as in the first test-sequence), as well as the

animated interactions

 The water itself (as in the first test-sequence), as well as the

approximated light-transport and refraction

 The water itself (as in the first test-sequence), as well as both and

the animated interactions and the approximated light-transport

and refraction

The measurement was done by first measuring the average time

needed to only render the ground (without light-transport and

refraction), then measuring the average time for the whole render-loop

for all test-sequences (note that this includes the particle field

simulation in case of the procedural approaches). The averages of each

test-sequence were subtracted by the average time needed to only

render the ground. The results are given in table 1 (for the Galaxy Note

10.1 2014 Edition) and table 2 (in case of the iPhone 5).

Comparing the two devices it should be kept in mind that the

Galaxy Note has to render more than 5.6 times as many pixels as the

iPhone, which is important since the overall performance is mostly

limited by the performance of the fragment shaders rendering the

ground and the water. The Galaxy Note is especially faster in

sequences where a lot of computations are done (e.g. the ones

including the animated interactions), which shows that computational

power in SOC GPUs has grown more rapidly than the available

memory bandwidth.

It is also of interest that the procedural methods outperform the

simple-texture method wherever light-transport and refraction are used.

This means that the higher memory usage of the texture based method

(note that the ground has to access the water texture/particle field as

well for the calculation of refraction and absorption) actually harms

performance more than the simulation of the particle fields and the

advection together, and proves that procedural methods are preferable

to those relying on precomputed data, at least in systems based on

SOC architecture.

The performance of the force-based approach and Navier-Stokes are

nearly the same. This was expected, since the bottleneck lies in the

fragment shaders used to render the scene, which are the same in both

approaches, while the actual particle simulations do not have a big

influence on the performance.

The force-based approach has on the other hand a much smaller

memory footprint, as can be seen in table 3, which sums up the

memory usage of the different approaches. The size of the textures

used by the particle fields were 64x64, the size of the Navier-Stoke

pressure field 128x128, and the random values needed by the

simulation were stored in a 16x16 texture, which is big enough for the

same reasons as mentioned earlier (note that the noise texture used

during simulation is a different one than the one used for the advection

due to different requirements of the respective algorithms). Also, the

randomness was increased by reading this random texture with an

offset, which was chosen randomly in each simulation step.

Table 3. Memory comparison of the three different approaches

 Simple
Texture

Force-based Navier-Stoke

Total (256x256)*4
= 256 kByte

(64x64*4+16x16)*4
= 65 kByte

(128x128*2
+64x64*3
+16x16)*4
= 177 kByte

Percentage 394% 100% 272%

For a visual comparison, a limited subjective test has been

performed. The subjects were asked to look at a video which depicted

all three different systems side-by-side, and asked to rate the quality on

a scale of 1 (lowest) to 7 (highest). The side-by-side presentation was

chosen to make it easier to compare the sequences. The resolution of

the systems had to be reduced drastically (to 720x426), and the

video-compression introduced some minor artifacts, while removing

some of the finer details. However, since this effect occurred evenly in

each of the different systems, their results can still be compared.

The subjects in question where master students which participated in

our computer graphics course, and they did the test voluntarily and

anonymously, thus also without receiving any kind of compensation.

23 subjects participated, and they rated the texture-based system with

an average of 4.2, the Navier-Stokes based system with an average of

3.4 and the force-based system (as presented in this paper) with an

average of 4.3. Thus, it can be stated that the method presented in this

paper reaches a visual quality which is a least equal to other, more

memory consuming methods.

The reader is invited to do an own comparison using the figures 1, 7

and 8 as well as the attached video. Note however that the visual

quality of these examples is degraded due to lossy video/image

compression and a much lower resolution.

5. Conclusion

SOCs, which are used in basically all smartphones/tablets (and

which will be used there with a very high probability even in the

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

113

future), need a slightly different approach to algorithmic design than if

aiming for standard PC hardware. In this paper a very first method has

been presented for procedural generation of water effects on these

devices. Comparisons with another, more traditional but highly

optimized approach show that the method of this paper is only slightly

faster, but (more importantly for SOC software design) has a much

lesser memory footprint. Also, it seems to be more versatile and

simpler to use.

In practice, procedural approaches can outperform methods relying

on precomputed data like textures (e.g. particles systems). Compared

to precalculation-based approaches, procedural methods have the

additional advantage that they make it simpler to introduce dynamic

effects like a high variation in movement or adaptation of small-detail

effects, e.g. based on the distance to the viewer.

Thus, using a novel, memory conservative and procedural approach

it was possible to simulate a comparably large body of interactive

water in real-time even on the limited hardware used in last-generation

smartphones/tablets.

References
[1] Busking, S., Vilanova, A., van Wijk, J.J.: Particle-based

non-photorealistic volume visualization. The Visual Computer, vol. 24,

iss. 5, pp. 335-346 (2008)

[2] Cem Yuksel, House,D.H., Keyser, J.: Wave particles. SIGGRAPH

Conference Paper, Article No. 99 (2007)

[3] Cords, H., Staadt, O.: Real-Time Open Water Environments with

Interacting Objects. Eurographics Workshop on Natural Phenomena

(2009)

[4] Darles, E., Crespin, B., Ghazanfarpour, D., Gonzato, J.C.: A

Survey of Ocean Simulation and Rendering Techniques in Computer

Graphics. COMPUTER GRAPHICS forum, Volume 30 (2010),

number 1, pp. 1–18

[5] Dong, F., Clapworthy, G.J.: Volumetric texture synthesis for

non-photorealistic volume rendering of medical data. The Visual

Computer, vol. 21, iss. 7, pp. 463-473 (2005)

[6] Deukhyun Cha, Sungjin Son, Insung Ihm: GPU-Assisted High

Quality Particle Rendering. Eurographics Symposium on Rendering

(2009)

[7] McEwan, I., Sheets, D., Gustavson, S., Richardson, M.: Efficient

computational noise in GLSL. Journal of Graphics Tools, vol. 16. iss.

2, pp. 85-94 (2012)

[8] http://www.futuremark.com/benchmarks/3dmark/all

[9] Fraedrich, R., Auer, S., Westermann, R.: Efficient High-quality

Volume rendering pf SPH Data. IEEE Transactions on Visualization

and Computer Graphics, vol. 16, no. 6. (2010)

[10] Guay, M., Colin, F., Egli, R.: Simple and Fast Fluids. GPU Pro, 2

(2011), pp. 433-444

[11] Guay, M., Colin, F., Egli, R.: Screen Space Animation of Fire.

Proceeding of SIGGRAPH Asia 2011 Sketches (2011)

[12] Harris, M.J., Lastra, A.: Real-Time Cloud Rendering.

EUROGRAPHICS 2001, vol. 20, no. 3 (2001)

[13] Horvath, C., Geiger, W.: Directable, high Resolution Simulation

of Fire on the GPU. ACM Transactions on Graphics, 28, 3, Article 41

(2009)

[14] Judice, S.F., Coutinho, B.B.S., Gilson A. Giraldi, A.G.:

Lattice methods for fluid animation in games. Computers in

Entertainment (CIE) - SPECIAL ISSUE: Games archive, Volume 7,

Issue 4, Article No. 56 (2009)

[15] Kallin, D.: Real Time Large Scale Fluids for Games. Proceedings

of SIGRAD (2008)

[16] Kolb, A., Latta, L., Rezk-Salama, C.: Hardware-based Simulation

and Collision Detection for Large Particle Systems. Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware (2004)

[17] Krüger, J., Westermann, R.: GPU simulation and rendering of

volumetric effects for computer games and virtual environments.

Proceedings of Eurographics (2005)

[18] Kun Zhou, Zhong Ren, Lin, S., Hujun Bao, Baining Guo,

Heung-Yeung Shum: Real-Time Smoke Rendering Using

Compensated Ray Marching. ACM Transactions on Graphics 27, 3,

Article 36 (2008)

[19] Laine, S., Karras, T.: Efficient Sparse Voxel Octrees. IEEE

Transactions on Visualization and Computer Graphics, vol. 17 , iss. 8,

pp. 1048-1059 (2011)

[20] Lorensen, W.E., Cline, H.E. : Marching cubes: A high resolution

3D surface construction algorithm. Proceedings of the 14th annual

conference on Computer graphics and interactive techniques

(SIGGRAPH), pp. 163-169 (1987)

[21] Moser, M., Weiskopf, D.: Interactive volume rendering on mobile

devices. Vision, Modeling, and Visualization (2008)

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

114

[22] Neyret, F.: Advected Textures. Proceedings of the

Eurographics/Siggraph Symposium of Computer Animation, pp.

147-153 (2003)

[23] Nielsen, M.B., Söderström, A., Bridson, R.: Synthesizing waves

from animated height fields. ACM Transactions on Graphics, Volume

32, Issue 1, (2013)

[24] Nielsen, M.B., Christensen, B.B.: Improved Variational Guiding

of Smoke Animations. Proceedings of Eurographics 2010, vol. 29, no.

2 (2010)

[25] Ogniewski, J., Ragnemalm, I.: Realtime Particle System

Simulation and Rendering in Embedded Systems, Proceedings of

MCCSIS 2013. Online version available at:

http://people.isy.liu.se/icg/jenso/

[26] Purkhet Abderyim, Tadahiro Fujimot , Norishige Chiba,

Mamtimin Geni: Surface Reconstruction for Particle Simulation Using

Level Set Method. The Journal of the Society for Art and Science, Vol.

6, No. 3, pp 154-166 (2007)

[27] Purevtsogt Nugjgar, P., Fujimoto, T., Chiba, N.: Markovtype

velocity field for efficiently animating water stream. The Visual

Computer, vol. 28, iss. 2, pp. 219-229 (2012)

[28] Rasmussen, N., Duc Quang Nguyen, Geiger, W., Fedkiw, R.:

Smoke Simulation for Large Scale Phenomena. Proceedings of

SIGGRAPH 2003, pp. 703-707 (2003)

[29] Raay, D., Sturt, C., Bossomaier, T.: Lattice Boltzmann Method

for Real-Time Simulation of Lava Flows. Geometric Modeling and

Imaging--New Trends, pp. 97-106, (2006)

[30] Rinchai Bunlutangtum, Pizzanu Kanongchaiyos: Enhanced

view-dependent adaptive grid refinement for animating fluids.

Proceedings of the 10th International Conference on Virtual Reality

Continuum and Its Applications in Industry (VRCAI’11), pp. 415-418

(2011)

[31] Rodriguez, M. B., Alcocer, P.P.V.: Practical Volume Rendering

in Mobile Devices. Advances in Visual Computing (2012)

[32] Qizhi Yu, Neyret, F., Bruneton, E., Holzschuch, N.: Lagrangian

Texture Advection: Preserving both Spectrum and Velocity Field.

IEEE Transactions on Visualization and Computer Graphics, vol. 17,

no. 11 pp. 1612-1623 (2011)

[33] Reeves, W. T.: Particle Systems Technique for Modeling a Class

of Fuzzy Objects. ACM Transactions on Graphics, vol. 2, iss. 2, pp.

91-108 (1983)

[34] Selle, A., Rasmussen, N., Fedkiw, R.: A Vortex Particle Method

for Smoke, Water and Explosions. SIGGRAPH 2005, ACM TOG 24,

pp. 910-914 (2005)

[35] Tessendorf, J.: Simulating ocean water. SIGGRAPH 2001 Course

notes (2001)

[36] Upchurch, E.M., Semwalk, K.S.: Dynamic cloud simulation

using cellular automata and texture splatting. Proceedings of the 2010

Summer Simulation Multiconference , pp. 270-277 (2010)

[37] Venetillo, J.S., Celes, W.: GPU-based particle simulation with

inter-collisions. The Visual Computer, vol. 23, iss. 9, pp. 851-860

(2007)

[38] Wei, X., Wei Li, Mueller, K., Kaufman, A.: Simulating fire

with texture splats. IEEE Visualization (2002), pp. 227 - 234

[39] Wrenninge, M., Bin Zafar, N., Clifford, J., Graham, G., Penney,

D., Kontkanen, J., Tessendorf, J., Clinton, A.: Volumetric Methods in

Visual Effects. SIGGRAPH 2010 Course Notes (2010)

[40] Yuan, Z., Zhao, Y., Chen, F.: Incorporating stochastic turbulence

in particle-based fluid simulation. The Visual Computer, vol. 28, iss. 5,

pp. 435-444 (2012)

[41] Yubo Zhang, Zhao Dong, Kwan-Liu Ma: Realtime volume

rendering using precomputed photon mapping. Proceedings of the

ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games (I3D ’12), p. 217 (2012)

[42] Yuri Kryachko: Using Vertex Texture Displacement for Realistic

Water Rendering. GPU Gems 2, Addison-Wesley Professional (2005)

[43] Ogniewski, J.: Procedural Interactive Water in Memory- and

Performance-Constrained Systems, Proceedings of NICOGRAPH

2014.

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

115

Jens Ogniewski received his M.S. in Electrical Engineering from

Linköping University in 2007. After a brief period working in the

industry he returned to Linköping University as a PhD student to

continue his research. Apart from computer graphics, his research

interests include video compression, parallel computing, and

embedded systems. He is a (student) member of ACM, and a full

member of the Society for Art and Science.

Figure 7 (next page): example images from the test-sequence including both refraction/absorption and interactions with the water surface, using a)

(up) a single texture, b) (middle) the force-based approach and c) (down) Navier-Stokes, as in [10]. Screenshots taken from the Galaxy Note.

Figure 8 (below): zoomed-in detail images of figure 7: a) (left) single texture, b) (middle) force-based approach and c) (right) Navier-Stokes

The Journal of the Society for Art and Science Vol. 14, No. 4, pp. 103-116

116

