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Abstract
Filling holes of 3D models is an important and complicated process. In this paper, we introduce a new
and robust method for filling complex holes in triangular mesh models. In order to fill separate holes, the
boundary edges of a hole are smoothly arranged and then locally uniform new points are added to the
hole. The new points are selected by minimizing a hole filling area. The Delaunay triangulation method
in a local area is applied for creating new meshes. By considering vertices of islands in a hole, new points
can be added to the hole, which allows filling of a complex hole with islands.
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1 Introduction

In recent years, laser scanning technology is
widely used to reconstruct highly accurate digital
3D models, such as archaeological artifacts, stat-
ues, furniture and buildings. Unfortunately ob-
ject complexity and self-occlusion cause scanners to
miss some areas, which results in holes in a triangu-
lar mesh. Thus, filling holes is one of the important
parts for 3D surface re-construction of objects.

Currently various mesh hole filling methods have
been proposed. There are two kinds of hole-filling
algorithms: volume-based algorithms [5, 8, 11, 15]
and surface-based ones [4, 14, 18]. The basic idea of
volume-based methods is to convert a surface mesh
into a volume representation and to use different
methods for filling holes in a volumetric space. For
example, Davis et al. [8] apply a diffusion pro-
cess to fill holes while Ju [11] constructs an in-
side/outside volume using an octree grid and re-
construct the surface by contouring it. Bischoff et
al. [5] performed morphological erosion and dila-
tion with hole boundary cells to generate a plau-
sible partitioning. Podolak et al. [17] applied the
min-cut algorithm to split a space into inside and
outside portions. They converted portions contain-
ing geometric errors to an intermediate volume and
made the relationship between the reconstructed
surfaces and the rest of original model. Volume-
based methods are robust and they work well for
complex holes such as holes with islands but they
are time-consuming and may generate incorrect
topology in case of large holes.

The surface-based methods explicitly search
holes and fill them locally on a triangular mesh.
The surface-based methods generate patches to
cover each hole. The surface-based methods are
fast, efficient and do not change geometric infor-
mation of original models. However, most of these
methods do not work well on complex holes with
islands. Another disadvantage of the surface-based
methods is the lack of robustness. The reason is
that the most surface-based algorithms are difficult
to make suitable relationship between complicated
outer boundaries and hole ones in curved holes.

In this paper, we introduce a new and robust
surface-based hole filling method. Many kinds of
holes can be created on surfaces depending on
scanned point data. Filling a complex hole over an
irregular region is not simple. Before filling holes
on a mesh, at first the detected holes are classified
into holes without islands, those with islands, and
gaps.

In order to fill holes on a mesh, each hole on the
surface is detected by using boundary edges. After
making a convex area by arranging boundary edges
of a hole, locally uniform points are added to the
hole. New meshes are generated from newly added

points and vertices on the boundary edges. Then
Delaunay triangulation method is applied locally
to create new meshes.

By considering the vertices of islands in a hole,
new points can be added to the hole. If distances
between new points and all vertices of the island
are greater than a user-defined value, new points
can be added to the hole. It allows filling of a com-
plex hole with islands. In addition, new points are
created by minimizing the hole filling area. Thus,
our method can generate a continuously smooth
surface on the hole area and it gets more robust
when holes are filled in the mesh.

We proposed a simple technique for filling a gap.
In order to fill a gap between meshes, holes are
created from the gap by stitching some points on
the boundary edges of the gap. The same method
can be used to fill newly created holes.

Our main contributions are: (1) We propose a
simple algorithm to fill complex holes with islands,
(2) Our proposed method is robust for filling holes
by minimizing filling areas and (3) the method can
generate a continuous surface by minimizing filling
area.

The rest of this paper is organized with the fol-
lowing sections. Section 2 introduces some surface-
based hole filling methods related to our approach.
Section 3 describes our method including holes and
gap filling algorithms. Section 4 shows experimen-
tal results of the new method and Section 5 con-
cludes this paper.

2 Related work

Our method belongs to the surface-based hole
filling algorithm. A variety of surface-based meth-
ods have been developed for filling holes on a 3D
mesh. In most of the methods, holes are identified
by locating the boundary edges and the detected
holes are filled by using different techniques such
as minimizing hole filling areas [3], dihedral angle
and Laplacian variation [14], normal variation [21],
curvature variation [16], energy [6], thin-plate en-
ergy [2] and Willmore energy [7].

For example, Barequet et al. [3] applied a dy-
namic programming method to find a minimum
area for triangulation in a 3D polygon to fill holes
on a mesh. Liepa [14] introduced a new method for
filling holes in unstructured triangular mesh seg-
ments by minimizing the combination of dihedral
angle and the sum of triangular areas. The re-
sultant patching meshes interpolate the shape and
density of the surrounding meshes. The method
works with arbitrary holes in oriented and con-
nected manifold meshes.

Zhao et al. [21] proposed normal variation mini-
mization technique. First, they performed interpo-
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Figure 1: The hole filling pipeline.

lation of mesh segments according to the angular
size of the boundaries of a hole. Starting from the
smallest angle, the state of the boundaries was up-
dated after interpolation, which was then restarted
from the smallest angle. Next, the desirable nor-
mals of the new triangles are approximated using
the desirable normal computing schemes. Finally,
the three coordinates of the new vertex are re-
positioned by solving the Poisson equation based
on the desirable normal and the boundary vertices
of the hole.

Brunton et al. [6] proposed a novel approach
to fill holes by using a minimum energy surface
obtained in the following three steps. First, the
hole boundaries are unfolded onto a plane using
energy minimization. Second, the unfolded hole is
triangulated using a constrained Delaunay trian-
gulation. Finally, the triangular mesh is embedded
as a minimum energy surface in R3. The running
time of the method depends primarily on the size
of the model, thereby making the method applica-
ble to large models. Pernot et al. [16] introduced
a new hole filling method by minimizing the cur-
vature variation between the surrounding and in-
serted meshes.

Hu et al. [10] proposed a novel hole filling al-
gorithm for triangular meshes. In this method, at
first, a hole is triangulated into a set of new tri-
angles using modified principle of minimum angle.
Then the initial patching mesh is refined according
to the density of vertices on the boundary edges.
Finally, the patching mesh is optimized through the
bilateral filter to recover missed features. By using
experimental results, the authors showed that the
proposed algorithm was robust for filling complex
holes.

Wang et al. [19] proposed a hole filling method
for recovering missing feature curves and corners.
Feature vertices around a hole of a CAD model
are extracted and classified into different feature
sets. These feature sets are automatically paired,
using ordered double normal, Gaussain mapping
and convex/concave analysis to produce missing
feature curves.

Li et al. [13] presented a feature preserving mesh
hole filling algorithm. They determine incomplete
feature curves around a mesh hole. They used a
polynomial blending curve to restore the missing
parts of the feature curves. These feature curves
divide the hole into simple sub holes. Finally, a

Bezier-Lagrange hybrid patch is constructed to fill
each sub hole. This method is applicable for a hole
with an island. Wang et al. [20] employed a predic-
tion method that combines a hole-filling algorithm
with a grey system.

All methods mentioned above have filled de-
tected holes successfully by using different tech-
niques. But most of these methods cannot fill holes
with islands. For example, Liepa [14] and Hu et al.
[10] considered a hole without islands. Otherwise
the mesh would not be connected.

3 Filling holes and gaps

Gaps, holes and their islands have similar bound-
ary structures and they can be detected by using
their boundary edges. If an edge is connected with
only one triangle, the edge is called a boundary
edge.

A hole is a closed loop of boundary edges. A
boundary vertex refers to the vertex on the bound-
ary edge. Some complex holes can have isolated
islands bounded by outer boundary edges. A gap
is a narrow space between two separate hole bound-
aries and it can be defined as follows:

Let v1, v2, · · · , vn and v′1, v
′
2, · · · , v′m be closed

loops of boundary edges. If a sphere with given
radius centered at any vetex of the closed loop
v1, v2, · · · , vn contains at least one vertex of the
closed loop v′1, v

′
2, · · · , v′m then these closed loops

create a gap.
For filling detected holes, at first, the detected

holes are classified into holes without islands, those
with islands, and gaps.

Figure 1 shows an overview of our hole filling al-
gorithm. The input for the algorithm is a 3D mesh
model with holes. In the first stage of the proce-
dure, gaps are filled. Then, the boundary edges
of the holes are refined by a simple algorithm. Fi-
nally, the holes are filled by adding locally uniform
points.

3.1 Filling gaps

A gap usually appears on the junction between
separate adjacent surfaces created from different
scans or at different resolutions [12]. To fill the
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Figure 2: (a) 3D model with a gap, (b) boundary edges of the gap, and (c) gap stitching process.

gap between those surfaces, the gap on the surface
is detected by using boundary edges. A gap can
be filled by stitching the two sides of the gap with
triangle strips. For example, Barequet [3] et al.
create triangle strips that minimize the total areas
of triangles and the dihedral angles from them.

In our method, all of the vertices on the gap
edges are not stitched, but only those close to each
other are stitched by the rule below.

First, a sphere is constructed whose center lies
at a vertex on the boundary edge of the gap. An
arbitrary value is given as the sphere radius. If the
sphere contains any vertices lying on the other side
of the gap, triangular meshes are constructed for
the vertices. Implementation details are described
in Figure 2. Figure 2 (a) presents a gap on the
model of a fragment pot. Figure 2 (b) shows the
boundary edges of the gap. Figure 2 (c) shows a
sphere whose center lies on vertex vi. The sphere
contains vertices from two boundary edges of the
gap and the triangular meshes are constructed from
five vertices vi, vi−1, vi+1, v

′
i−1 and v′i+1.

The next vertex for constructing a sphere is
searched within the distance given according to the
constructed meshes. The process is repeated until
all possible triangular meshes are constructed be-
tween the boundary edges of the gap. After this
process, the gap between the boundary edges of
adjacent surfaces is transformed to several sepa-
rate holes. If a gap is wide, the method may fail
since the sphere can contain vertices on different
holes or gaps.

3.2 Refining boundary edges

In order to improve the quality and robustness
of our method, the boundary edges of a hole are
refined. In the refining stage, small angles between
adjacent boundary edges are removed and concave
boundary edges become almost convex. The refin-
ing procedure is similar to the hole filling method

Figure 3: Rules for creating triangular meshes: (a)
θi ≤ 75◦, (b) 75◦ < θi ≤ 135◦.

suggested by Zhao et al [21]. Boundary edges on
each of the detected holes are refined as follows:

• Calculate angle θi between two adjacent
boundary edges (vi, vi+1) and (vi−1, vi) at ev-
ery vertex point (See Figure 3).

• Starting from the vertex with the smallest an-
gle, create new triangles on the plane deter-
mined by the following rules:

– if angle θi is smaller than 75 degrees,
construct a mesh vi−1, vi, vi+1 (See Fig-
ure 3(a));

– if angle θi is greater than 75 degrees and
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Figure 4: Result of the refining process: (a)
boundary edges before refining, (b) those after re-
fining.

smaller than 135 degrees, find new ver-
tex vnew on the plane of vi−1, vi, vi+1

when the following conditions are satis-
fied (See Figure 3(b)). Here,

vivnew =
vi−1vi + vivi+1

2
, (1)

̸ vi−1vivnew = ̸ vnewvivi+1. (2)

– if angle θi is greater than 135 degrees, a
new mesh is not constructed.

• Update the hole by using new boundary edges

• Repeat all steps until the process is completed.

After this process, the boundary edges of the
hole become almost convex. For example, Figure
4 (a) shows the boundary edges of a hole and (b)
shows the result of our refining algorithm applied
to the boundary edges.

By refining boundary edges, locally uniform
points can be added to the hole for filling by a
smooth patch. The process will be described in
more detail in the following section.

3.3 Filling holes

In order to fill holes with almost convex bound-
ary edges, locally uniform points are added to each

of the holes. New points are added by using a sim-
ilar technique introduced in [1].

In our method, new points are created by mini-
mizing hole filling areas. Details of the method are
described below.

Vertices v0, v1, · · · , vN are set as the boundary
vertices of a hole and edges e0, e1, · · · , eN are set as
the corresponding boundary edges of the hole. For
boundary vertex vi, boundary vertices are divided
into two sets Ai and Bi. Ai is the set of the next
vertices of vertex vi and Bi is the set of the previous
ones. The size of the two sets is equal to N

2
+1 and

the sets can be formulated as follows:

Ai = {aj | aj = vi+j , j = 0, . . .
N

2
}

Bi = {bj | bj = vi−1, j = 0, . . .
N

2
} (3)

In the next step, line segments are created using
vertices from sets Ai and Bi:

lj = {aj , bj , j = 1, . . .
N

2
− 1} (4)

For each boundary vertex vi, a candidate vertex
on the boundary is divided into two parts (in Figure
5 (a), vertex v3 is divided into a and b), and the
hole filling area Shole,i generated by line segments
aj , bj , (j = 1, . . . N

2
− 1) can be estimated as

Shole,i =

N
2
−1∑

j=0

S∆ajaj+1bj+1 +

N
2∑

j=1

S∆ajbjbj+1 , (5)

where S∆ajaj+1bj+1 and S∆ajbjbj+1 are areas of tri-
angles ajaj+1bj+1 and ajbjbj+1.

In practice, most of triangles ∆ajaj+1bj+1(j =
0, . . . , N

2
− 1) and ∆ajbjbj+1(j = 1, . . . , N

2
) are

skinny ones and their areas can be approximated
as follows:

S∆ajaj+1bj+1 ≈ 1

2
ajaj+1 · aj+1bj+1

≈ 1

2
eav · aj+1bj+1, (6)

S∆ajbjbj+1 ≈ 1

2
bjbj+1 · ajbj

≈ 1

2
eav · ajbj , (7)

where eav = 1
N

∑N

j=0
|ej | is the average length of

the boundary edges of the hole. By using equations
(6) and (7), the surface area Shole,i of the patch is
estimated as:

Shole,i ≈ eav ·

N
2
−1∑

j=1

ajbj . (8)
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Figure 5: (a) line segment creation and hole filling area estimation, (b) new points addition, (c) final
result.

For example, Figure 5 (a) shows a hole with
boundary vertices v0, v1, . . . , v7. For vertex v3,
boundary vertices of the hole are divided into two
sets A4 = {a0, a1, a3, a4} and B4 = {b0, b1, b3, b4}.
Then, line segments a1b1, a2b2 and a3b3 are cre-
ated. By Equation (8), the hole filling area that
contains line segments a1b1, a2b2 and a3b3 is ap-
proximated by

Shole,3 ≈ eav · (a1b1 + a2b2 + a3b3). (9)

For each of vertices vi, (i = 0, 1, . . . , N) line seg-
ments are created as described above and hole fill-
ing areas Shole,i, (i = 0, 1, . . . , N) are estimated by
Equation (8). In order to increase robustness of our
method, the vertex corresponding to the minimum
hole filling area is selected for the next step.

Vertex vmin is set as the base one to create hole
filling area min(Shole,i)(i = 0, 1, . . . , N). For ver-
tex vmin, line segments are created by Equation
(4). New points are added for filling the hole to
these line segments by the following rules:

• Find the number of division k for each line
segment;

kj =
ajbj
eav

(j = 1, . . . ,
N

2
− 1) (10)

where ajbj is the length of a line segment
and eav is the average length of the bound-
ary edges of the hole.

• Find points that can divide the line segment
kj parts equally. Those points are considered
as the candidate ones for filling the hole.

• Create a new point set for filling hole. If the
sphere whose center lies on a candidate point
does not contain any vertex of the object and
any points of the new point set, the candi-
date point will be added to the set of the new
points. The sphere radius R is

R =
eav
2

, (11)

where eav is the average length of the bound-
ary edges of the hole.

After a new point set is created for filling the
hole, meshes are constructed from points in the new
point set and boundary vertices by using locally
Delaunay triangulation methods such as the one
suggested by Gopi et al. [9].

Figure 5 (b) shows the process for the new point
addition. Vertex v2 is the base one to create the
minimum hole filling area. Line segments are cre-
ated for this vertex. Then, red dots, which are the
candidate points, are created on the line segments.
Since sphere with center point p does not contain
any vertex or blue dot, center point p will be added
to the set of new points. Since sphere with center
point q contains boundary vertex v6, point q is not
added to the set of new points. Figure 5 (c) shows
the final result of the hole filling process.

3.4 Filling holes with islands

To fill a hole with islands is one of the impor-
tant parts of the hole filling process. islands in a
hole can be detected from the boundary edges. An
island is bounded by the outer boundary edges.

After an island is detected from the outer bound-
ary edges, a hole containing the island is identified
as follows.

Island I is set from boundary vertices
v0, v1, . . . , vN and holes H0, H1, . . . , HM are
detected on a mesh. Then, distance dI,Hj between
island I and hole Hj is defined as

dI,Hj =

∑N

i=1
d(vi, v

′
i)

N
, (12)

where v′i is the closest boundary vertex from hole
Hj to vertex vi and d(vi, v

′
i) is the distance between

vertices vi and v′i.
Hole H with distance

min(dI,Hj ) (j = 0, . . . ,M), (13)
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Figure 6: Filling a hole with an island: (a) a hole
before filling process, (b) the one after the process.

can contain island I.
For filling a hole with islands, new points should

be considered before adding the points to the hole.
If a sphere whose center lies on a candidate point

contains any vertex of an island, the point cannot
be added to the hole. After creating a new point in
the hole, meshes are constructed from newly added
points, boundary vertices of the hole and the island.

Figure 6 (a) shows a hole with an island and (b)
shows the result of the hole filling algorithm. The
orange lines represent the new mesh.

If the distances between newly added points and
vertices of an island are greater than the sphere
radius defined by Equation (11), the new method
cannot fill the hole with the island. This is the
disadvantage of our algorithm.

4 Experimental results

This section describes some results of our ap-
proach for filling holes. We have implemented our
algorithm on various 3D models, such as archeo-
logical fragments. All objects have many kinds of
complex holes.

The first experiment was implemented on a 3D
fragment model of a pot shown in Figure 7 (a). The
model consists of two separate surfaces, caused by
scanning with different devices. The gap between
the two surfaces was stitched by our method as
shown in Figure 2. After stitching, the gap was
transformed to several separate holes. Then the
holes were filled by using our method.

Figure 7: (a) 3D model of a pot fragment, (b)
result after hole filling.

In Figure 7 (a), the blue triangular meshes of
the object are shown. The boundary edges of the
hole are indicated by red lines. Figure 7 (b) shows
the result of our hole filling algorithm. In this ex-
periment, the sphere radius is set with the doubled
value of the average distance of points. The 3D
fragment model has 48,563 vertices and 95,822 tri-
angular faces. After filling the hole, the model has
50,298 vertices and 99,368 triangular faces.

In the next experiment, a hole on a rabbit model
was filled by our new algorithm. Figure 8 (a) shows
the model with a hole. The result without area
minimization is presented in Figure 8 (b). In this
case, for an arbitrary vertex among the boundary
vertices, new points were added by creating line
segments and then the hole was filled. Figure 8 (c)
shows the result of our algorithm when the area
was minimized.

Figure 9 (a) shows the 3D model of a stone tool.
The surface of the model contains a hole with an
island. The closed boundary edges of the hole and
the island are indicated by bold red lines. The hole
was filled by adding new points with consideration
of vertices of the island. The result is shown in
Figure 9 (b).

Figures 10 and 11 show the results of the hole
filling algorithm applied to different 3D models of
earthenware objects. The 3D model in Figure 10
has 227,030 vertices and 450,700 triangular faces
while the model in Figure 11 has 642,570 vertices
and 1,276,560 triangular faces. Some holes on mod-
els contain an island such as shown in Figure 6.
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Figure 8: (a) rabbit model with a hole, (b) result without hole filling area minimization, (c) result with
hole filling area minimization.

Figure 9: (a) 3D model with a hole, (b) result after
hole filling.

After filling the holes, the model in Figure 10 has
236,950 vertices and 472,410 triangular faces, and
the model in Figure 11 has 667,314 vertices and
1,332,850 faces.

From experimental results, the proposed method
is fast and easy to implement. The computation
time for filling each hole is less than 5 seconds on
an Intel Core i5 processor. However, our method
can not construct continuously smooth surface on
a hole on a highly curved area because holes are
filled by nearly planner surface.

Figure 10: (a) 3D model with a hole, (b) result of
the hole filling algorithm. (The data is provided by
Tokyo National Museum.)

5 Conclusion

Filling holes on a 3D model is an important and
complicated process. Due to several reasons, there
are many kinds of complex holes on the surface
of an object. In this paper, we discussed new hole
filling algorithm of 3D meshes. In order to fill holes,
boundary edges of holes are refined and new points
are added to the hole by minimizing hole filling
areas. Locally Delaunay triangulation method is
applied to construct new meshes for filling holes.
For filling complex holes such as those with islands,
new points are added to the holes by considering
vertices of the islands. Before using this algorithm,
gaps of objects are converted into separate holes by
stitching the vertices on the boundary edges of the
gap.

Our experimental results showed that the pro-
posed method is robust for filling holes on meshes
and effective for filling holes with islands.
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