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Abstract

It is important for systems to recognize user actions using sensors and cameras when constructing interactive
systems and artworks. Conventional systems have tackled to make systems recognize wide varieties of user
actions and to install sensing devices with various environmental restrictions. However, since the recognition
methods in conventional systems are specialized to their own work, they cannot be applied to other systems
and a specialist for activity recognition is required to construct the systems. In addition, conventional
systems took a long time to select recognition algorithms and to set the recognition parameters. This means
that they cannot have enough flexibility to change the actions to be recognized or to adapt to changing
environments. This paper proposes a method of adding interactivity to various surfaces and recognizing the
positions and intensities of performed action by using multiple accelerometers. Our method has functions
that enable easy settings and maintenance even by beginners in activity recognition. Participants in an
experiment on constructing interactive surfaces constructed a system that could recognize two actions at
two points in 51 minutes on average. Moreover, we confirmed the effectiveness of our approach with two
actual artworks in long-term media-arts exhibitions.
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1 Introduction

Advances in computer technologies, especially hu-
man computer interaction techniques, have expanded
the means of art expression. By making art or venues
for exhibitions interactive, artists can depict what
they want to explain more richly, and audiences can
feel like they have entered into the world of the art
piece.

There are currently many systems that make arts
interactive. These systems are typically small and
recognize user actions (e.g., user gestures and the po-
sition at which the user inputs them) very accurately.
For example, HoloWall [1] uses a camera and infrared
illumination to locate objects near a glass wall. It
can not only recognize when something is touching
the wall but also objects approaching the wall with-
out making any contact. However, HoloWall needs
enough space because it needs to have its camera
placed behind the surface, and it also has limitations
in that the area where it can recognize actions needs
to be within the angle of view of the camera. Ping-
PongPlus [2] can detect the location where a ball has
hit a table by using multiple microphones. Although
it may be easy to apply the system hardware to an-
other table, users need to reconstruct the algorithm
for other tables because its recognition algorithm for
location detection is specialized for a ping-pong ta-
ble. Since the recognition methods in conventional
systems are specialized for their own work, they can-
not be applied to other systems and specialists in
activity recognition are required to construct the sys-
tems. In addition, conventional systems took a long
time to select recognition algorithms and to set the
recognition parameters. This means that they can-
not have enough flexibility to change the actions to
be recognized or to adapt to changing environments.

We created a framework that could uniformly rec-
ognize user actions in a variety of situations, and im-
plement software that had a function to utilize recog-
nition to set an interactive system even without ex-
perts in activity recognition. The proposed method
added interactivity to various surfaces and recognized
the positions and intensities of performed actions by
using multiple accelerometers. Our method had func-
tions that enable easy setting and maintenance even
by beginners in activity recognition. Fabricators who
want to set the interactive system only have to fix the
accelerometers to the material and perform actions
to be recognized several times for the settings and
maintenance. The accelerometers are small enough
to be installed invisibly in existing environments, and
the proposed system can be used in conjunction with
other systems. We confirmed the effectiveness of our

approach through two actual artworks in long-term
media-arts exhibitions [3].

The remainder of this paper is organized as follows.
Section 2 explains related work. Section 3 describes
the design, system structure, and recognition method
in our system. Sections 4 and 5 explain how we im-
plemented the calibration software and evaluated its
performance. We then present the two actual appli-
cations in Sections 6. Finally, we conclude this paper
and discuss our future work in Section 7.

2 Related Work

Several studies have proposed methods of recogniz-
ing user actions for interactive systems. For example,
Holowall [1] enables users to interact with a comput-
erized wall using their fingers, hands, and own bodies.
It recognizes user actions by using infrared lights and
a video camera with an IR filter, which is installed be-
hind the wall. The camera captures the images on the
back surface of the wall, which are illuminated by the
IR lights. HINOCO [4] is an installation system that
detects the motion of humans and drapes by using a
camera and detects the positions of user actions by
using a laser range finder. Fukasawa has proposed a
system that recognizes user gestures in front of a wall
[5]. It tracks multiple people and recognizes hand ges-
tures by using a camera. ZeroTouch [6] is a flat-panel
optical multi-touch technology using a linear array of
modulated light receivers that surrounds the periph-
ery of a display to detect touches. It allows precise
sensing of hands, fingers, and other objects within a
2-dimensional plane frame. It tracks touch up to 30
concurrent points. These systems recognize user ac-
tions that are performed on surfaces with hands the
same as our system does. However, Holowall needs
to have its camera placed behind the surface, and it
needs enough space. HINOCO and Fukasawa’s sys-
tems are difficult to install in public spaces because
they need to have their cameras placed at spots in
the public eye. Since methods using cameras cannot
recognize user actions without body movements (e.g.
breathing) and the intensity of actions, they need to
be integrated with other methods if the system is
to recognize such actions. Although ZeroTouch can
detect the positions of actions without a camera, it
cannot flexibly change areas where the system can
recognize user actions.

There is a system apart from actions with hands
that can detect the location where a ball has hit a
table. PingPongPlus [2] is a digitally enhanced ping-
pong game. When a ball hits the table, the sound
travels through the table at roughly twice its speed
in air, and eight microphones mounted on the un-
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derside of the table pick up the sound. When a mi-
crophone detects a hit, a time value is assigned to
that microphone. The time values are evaluated by
an algorithm that determines the location of the hit.
This system is similar to our system in that multiple
sensors are installed on the surface. However, since
it can only be used for hard surfaces where the high
frequency waves travel easily, it cannot be used with
the soft surfaces such as fabrics.

There have also been studies on recognizing vari-
ous user actions other than touch. BYU-BYU-View
[7] enables users to interact with virtual environments
on a screen through their own breath and wind emis-
sions from the device. It uses a screen made from a
wind-permeable material. Wind passes through this
screen, behind which is an array of wind-input detec-
tion sensors. Jellyfish Party [8] is a Mixed Reality
installation using a head-mounted display to create
virtual soap bubbles and jellyfish in real space in re-
sponse to breath input. It uses a device equipped
with a spirometer to create bubbles in response to
user breathing. livePic [9] and Thermo-Tablet [10]
detect both touch and breath by using a thermo-
infrared camera located behind the surface. How-
ever, fabricators who set the interactive system by
using BYU-BYU-View cannot project high resolution
pictures because its screen has to be made of coarse
material that can let wind pass through it. Users
need to hold the input device for the system in their
hand in Jellyfish Party, which is not suitable for pub-
lic spaces. Although livePic and Thermo-Tablet can
not only recognize breathing but also touch the same
as our system can, the thermo-infrared camera is too
expensive to be used casually.

It is important for this type of system to not only
recognize the occurrence of touches but also the de-
tailed properties of touch such as intensity. Wrin-
kleSurface [11] is a touch panel that recognizes multi-
touches. It consists of a silicone rubber panel, an
acrylic panel as its base, and LED modules. The
system uses elastic material to detect wrinkles that
are made by touching the panel. Touché [12] recog-
nizes gestures on the surface and utilizes Swept Fre-
quency Capacitive Sensing to recognize human hands
and body configurations. It can detect the number
and shapes of fingers that are used to touch the sur-
face. As previously stated, if the number of recog-
nizable input types increases, the expression of inter-
active arts can be enhanced. However, it is difficult
to change areas where the system can recognize user
actions because WrinkleSurface needs to have a the
special device (which takes a lot of time to generate)
placed onto the surface. Touché requires conductiv-
ity for objects where the method can detect actions.

If fabricators want to apply it to non-conductive ob-
jects, they have to coat the objects with conductive
ink or tape.

As we previously mentioned, these systems achieved
novel recognition functions. However, since these recog-
nition mechanisms were specialized for their own sys-
tems, they could not be applied to other artworks.
In other words, professionals in activity recognition
are required to construct such interactive systems in
related works since appropriate settings for recogni-
tion and algorithms vary according to different sit-
uations. We created a generalized framework of ac-
tivity recognition in this study for constructing in-
teractive surfaces in a variety of situations, and im-
plemented software thar enables artists or general
people to manage recognition settings without expert
knowledge. In addition, one of the most important
problems for such interactive systems is in the main-
tenance of artworks. Usually such systems need to
be maintained correctly by adjusting sensors or fix-
ing problems in changing situations. However, since
experts are not always ready to fix problems, these
systems should have functions for maintenance. Our
system has maintenance functions such as automatic
calibration to determine the threshold, error notifi-
cation when problems in sensors occur, and the ad-
dition/modification of gestures to be recognized by
the system. These functions allow general users to
construct and maintain interactive surfaces without
experts.

3 Proposed System

Our aim in this study was to implement an interac-
tive system that could easily be installed in various
environments by a fabricator who was not familiar
with activity recognition. The proposed system rec-
ognizes user actions that sway the surface of a target
object.

3.1 System design

Principles
We designed our proposed system with seven prin-
ciples in mind:

e No wearable devices: When using the sys-
tem in public, people should not have to wear
any devices to interact with the system.

e No cameras: It is not practical to place cam-
eras in most public spaces.

e Invisible to audience: Since exposed devices/
cables might spoil the image of a showpiece, the
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devices in the system should be invisible to vis-
itors.

e Scalability: The system should target surfaces
of various sizes.

e Various materials: The system must be able
to be installed in various types of materials such
as fabric, paper, and thin board.

e Easy maintenance: Even an amateur who
is not familiar with sensors should be able to
maintain the system.

e Integration with other methods: There
are various conventional methods (e.g., a po-
sition detection methods using cameras or ges-
ture recognition methods using Swept Frequency
Capacitive Sensing) that are specialized in de-
tecting specific activities with high level of ac-
curacy. It should be possible to integrate our
method with such methods to improve recogni-
tion accuracy.

Targets for recognition
Our system recognizes three activities that are im-
portant for interactive systems.

1. Kinds: The system classifies types of actions
such as patting, pushings and breathing on the
surface.

2. Intensity:
granularities.

It recognizes intensity at several

3. Positions: It detects positions where users per-
form actions.

Our system uses multiple accelerometers on the
surface of an object that acquires actions and rec-
ognizes them by time-series data from the accelerom-
eters. If a user touches the surface, it sways. By at-
taching an accelerometer to the surface, the system
can detect the swing. By using the difference of each
acceleration data, the system can recognize activities
stated above. Figure 1 shows an example of accel-
eration data when a user touches a fabric whose top
and bottom edges are fixed to the ceiling and floor
of a room. Four accelerometers are attached to the
four corners on the fabric in the form of a rectangle
(1000 x 950 mm) in these examples. These graphs
provide one-axis acceleration data for each accelerom-
eter whose direction is front-to-back. The graph at
left indicates that we touched the upper left of the
rectangle, and that on the right indicates that we
touched the upper right of the rectangle. We touched
at the timings indicates by the vertical line, which
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Figure 1: Examples of acceleration data when touching
fabric.

crosses with each horizontal line in the graph. The
waveforms indicates that the sensors placed near the
positions of the touches detect stronger waves. This
means that the positions and intensities of touches
can be detected from the data of multiple accelerom-
eters.

In addition, our system can be installed in existing
environments since the layout of the accelerometers
is not restricted. This means that artists do not need
to consider any design restrictions caused by the sys-
tem in recognizing user actions. This characteristic
creates an advantage in that artists and the system
engineers can create/design showpieces individually.

Functions for easy setting

Since the recognition methods in conventional sys-
tems are specialized for their own work, specialists
in activity recognition are required to construct the
systems. In addition, conventional systems take a
long time in selecting recognition algorithms and in
setting the recognition parameters. Therefore, the
proposed system gathers acceleration data when fab-
ricators perform actions that they want to recognize
multiple times, and the system creates a classifier by
using machine learning. Fabricators can easily con-
struct an interactive system with our system. In addi-
tion, the system allows them to easily add new kinds
of actions and install it in other environments. We
employed a decision tree (DT) and a support vector
machine (SVM) as context recognition algorithms.

3.2 System structure

Figure 2 outlines the structure of our system. It
consists of three-axis accelerometers, a PC, micro-
computer(s), and a surface that perceives user ac-
tions. The surface can be made from various types
of materials such as fabric, paper, and film. The
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Figure 2: System structure.
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Figure 3: Flowchart for proposed method.

accelerometers are installed on its back. The num-
ber and the positions of the accelerometers can be
determined according to the situation (e.g., location
restrictions of the showpieces or characteristics of the
materials). The sensed data are sent to the PC through
the microcomputers.

3.3 Recognition method

Figure 3 shows the processing flow for the proposed
method which is divided into three steps: Prepara-
tion, Learning, and Recognition.

Preparation

The system prepares to gather the learning data
in this step. First, a fabricator installs multiple ac-
celerometers on the target surface. Next, he/she de-
termines the type of recognition; i.e., area or linear.
The former means that the surface is divided into
several areas and the system outputs the area where
the user performed an action. The latter plots the
point (x, y) where the user performed an action.

Learning

The system gathers the learning data in this step,
determines the recognition algorithm, and selects the
feature values to be used in activity recognition. First,
the system gathers the data in a stable state. Al-
though the input surface sways when a human gets
close, the system needs to determine if he/she is per-
forming an action.

Next, the system gathers acceleration data as learn-
ing data when a user actually performs actions on the
surface. He/she performs an action in the area type
in each area several times (ten or more times are rec-
ommended). He/she performs an action in the lin-
ear type at nine points to calculate the coordination
shown in Figure 4.

After the data are gathered, the system calculates
the feature values and creates the classifier. The
system calculates the threshold of acceleration data,
which it recognizes at the start of user action using
the maximum and minimum values of the data in
the stable state. The system calculates feature val-
ues with one-second acceleration data from the start
of user action. Thre are to types of feature values,
including mean, variance, and crossingcounts (com-
plete list of feature values is given in Appendix).

The system constructs a classifier by using these
feature values. If the fabricator wants to recognize
multiple kinds of action in the area type, the system
creates a DT. The system in this research created a
DT with J48graft [14]. If he/she wants to recognize
one kind of action in the area type, the system create
a DT and SVM and chooses the better of the two in
the results from cross validation of the learning data.
The system in this research used SMOreg [15] as the
SVM. Since our method using SMOreg as SVM could
only detect positions, the system could not recognize
multiple kinds of actions in the area type by using
SVM. If the fabricator wants to recognize one kind of
action in the linear type, the system creates an SVM.

When the system uses DT, it calculates the feature
value of the node and pursues the edges of the DT in
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turn. We will next describe how to treat SMOreg.
The system calculates coefficients for every sensor
with SMOreg, and calculates distances that are from
a sensor to a point where a user would perform an ac-
tion by using their coefficients. The point is expected
to be near a position that is on a circumference whose
radius is the calculated distance and whose center is
every sensor. Therefore, the system determines that
a recognition point is a point where the variance in
values that is divided by the distance between an op-
tional point and every sensor by using the calculated
distance that is the shortest. In this way, the sys-
tem can detect a certain point in a continuous area.
The system does not use the feature values that are
compared among sensors because it calculates the dis-
tance from each sensor. The proposed system cannot
presently handle multiple kinds of action in the lin-
ear type because coefficients calculated with SMOreg
cannot classify multiple kinds. When the system uses
SMOreg in the area type, it determines a point that
is the nearest of all calculated points as the result.
Recognition

After a recognition model is constructed , the sys-
tem is used to recognize actual user actions. First,
the system loads the parameters for recognition cre-
ated in the previous step, and starts to obtain the
acceleration data. If the acquired data exceed the
threshold, the system starts to process for recogni-
tion by calculating the feature values.

After the recognition process is finished, the sys-
tem outputs the recognition result so that other soft-
ware can also use the result through a communication
method such as OSC and UDP.

4 Implementation

We implemented a prototype of the calibration soft-
ware explained in Section 3.3. The software has three
modes, i.e., Preparation, Learning, and Recognition
modes.

Preparation mode

The system prepares to gather the learning data in
this mode. Figure 4 has a snapshot of this mode being
used. After multiple accelerometers are installed on
the target surface and the microcomputers are con-
nected to a PC, the user activates the software. First,
he/she inputs the size of the surface in the console
window. If he/she is using it in the area type, he/she
also inputs the number of point that he/she wants
to recognize. The system sets nine points by default
in the linear type. The system draws circles in the
windows of Figure 4 that are positions where he/she
wants to perform actions, which can be moved by
dragging.

Figure 5: Snapshot of software’s Learning mode.

Learning mode

The system gathers the learning data in this mode,
and creates a classifier. Figure 5 has a snapshot of
this mode being used.

The system displays a graphical user interface (GUI)
to control the settings for learning in the bottom half
of the figure. The top left part draws the current
data on accelerometers. There are several buttons
in the bottom right of the figure labelled Mean, Var,
Window, CSV, g0, g1, g2, g3, Graph, Sensor Check,
Stable, Action Name Set, Action, A+, A-, Tempo-
rary Action, Actioned, Linear, J48graft, SMOreg and
Recognition Mode, a slider labelled WINDOW, and
a text box above the “Action Name Set” button. If a
user push as the “Mean” or “Var” button in the left
column of the bottom right GUI, the system draws
the mean values or variance values of data under the
current data. The window width for calculating mean
and variance values is changed by using the “WIN-
DOW?” slider in the state of the pushed “Window”
button. If the user pushes “CSV”, the system saves
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the current data and the current time in the CSV for-
mat. If the system is in a state where the “Graph”
button is pushed, it draws a graph of the current data
at the top right. The drawn data are from the three
dimensional data of one sensor. By pushing the “g0”—
“g3” radio buttons, the system converts the sensors
for drawing the graph. Additionally, the system has
a “Sensor Check” button, which checks whether sen-
sors are malfunctioning. If the system receives data
from malfunctioning sensors, it raises an alert and
does not receive data from the malfunctioning sensor
until it is repaired. The functions mentioned above
are not needed to create the classifier, but the user
can use them for reference.

The user creates the classifier by using the following
flow. First, the system gathers data in a stable state.
The system records data for the stable state when the
“Stable” toggle button is pushed.

The system next gathers data when the user is per-
forming an action. He/she selects one of the action
points by clicking one of the points graphically dis-
played at the bottom left of Figure 5. The action
name is set by typing a name into the text box in the
center column of the bottom right GUI (It is labelled
as “Touch” in Figure 5). The system records data as
the action that was named when the “Action” but-
ton is pushing. If the user cannot identify the action
point by the time the action ends (e.g., the action of
throwing a ball), he/she can set the point and name
the action after performing it by using the “Tempo-
rary Action” button and “Actioned” button. If the
user has an action that he/she does not want to rec-
ognize, he/she should just type “None” in the text
box. The system ignores recorded actions labelled
“None”. The system can record data any number of
times.

After the action is recorded, the system calculates
the feature values and the user creates the classifier
by pushing the “J48graft” or “SMOreg” button. All
the feature values that we implemented in this re-
search are provided in the Appendix. The system
uses Weka [13], which is a popular suite of machine
learning software to create the classifier.

The system createsa DT by using the J48graft of
Weka when the user wants to recognize areas, the
kinds of actions, or their intensities. Also, the system
creates an SVM by using the SMOreg of Weka as an
SVM when the user wants to recognize the positions.

The system moves into Recognition mode when the
“Recognition Mode” button is pushed.

Recognition mode

The system in this mode recognizes the action by
using the classifier created in the Learning mode. Fig-
ure 6 has a snapshot of the Recognition mode (UDP

UDP Mode

UDP Host
192.168.1.
UDP Port
1999

Connect

Figure 6: Snapshot of software’s Recognition mode.

Mode) being used.

The recognition results (the position and the name
of the detected action) can be desplayed on our soft-
ware or transmitted via UDP or OSC. After they
are selected, the system loads the classifier and the
threshold values from the data in the stable state.
Then, the system starts to obtain the acceleration
data, and starts to recognize action if the data is over
the threshold value.

The system in this mode checks whether sensors
are malfunctioning at fixed intervals. If it finds any
errors, it displays an alert. It this happens, the user
enters Gathering & Learning modes again or repairs
the sensor.

We implemented two applications that interacted
with receiving output.

Figure 7 has a screenshot of the sound output ap-
plication. The circles indicate action points, and the
user moves sound files via drag-and-drop operations
into the circles. If the application receives the recog-
nition data through UDP or OSC, it starts the file
that has been assigned.

Figure 8 has a snapshot of the function output ap-
plication. The user moves function names via drag-
and-drop operations into the circles. If the applica-
tion receives the recognition data through UDP or
OSC, it activates the assigned software or executes
the assigned command key.

5 Evaluation

We carried out two experiments by using the imple-
mented software where the systems of both consisted
of a note PC (CPU: Core i7 2.80 GHz, and RAM of
8 GB), four accelerometers (#KXM52-1050 XYZ +2
G), and two microcomputers (Arduino Nano). The
software received the data at 60 Hz.
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Figure 7: Screenshot of sound output application.
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Figure 8: Snapshot of function output application.

5.1 Use of several materials
5.1.1 Experimental purposes

We evaluated whether the proposed system worked
well in the first experiment for several materials that
were soft fabric, hard board and so on because our
aim was to develop a system that could be set inter-
actively onto several materials. We investigated the
recognition rates in cases where the proposed method
was used with several materials while the feature val-
ues were calculated automatically. In addition, we
explored what kinds of characteristics the system had
for each material. We considered how we could up-
grade the proposed system from the results.

5.1.2 Experimental setup

We have prepared a fabric (made of 100% nylon), a
fabric (made of 100% cotton), a quadrilateral table, a
corkboard, and a paper box. The cotton was harder
fabric than that made of nylon. We installed four
accelerometers on them in the form of a rectangle.
All input areas were inside the rectangles contain-
ing the four accelerometers. Table 1 lists the sizes of

13, No. 4, pp. 198 — 217

Table 1: Sizes of each material and rectangle

Size
Material Material (mm) | Rectangle (mm)
Nylon (top) 1000 x 1150
Nylon (bottom) 1500 x 1170 1000 x 1150
Cotton 1500 x 900 940 x 870
Quadrilateral table 600 x 900 530 x 820
Corkboard 450 x 600 420 x 570
Paper box 250 x 190 x 165 -

Accelerometers

Figure 9: Fabric made of 100% nylon.

the materials and rectangles. We hanged the nylon
and the cotton on a hanger rack. Figures 9 - 14 are
photographs that show how the accelerometers were
installed onto them. The accelerometers were sewn
onto the nylon and the cotton fabric. The accelerom-
eters were attached to the quadrilateral table, the
corkboard, and the paper box with vinyl tape. The
accelerometers were attached to the center of each of
the paper box’s sides (Figure 14) only for the paper
box, and we performed actions on four surfaces. Af-
ter the accelerometers were installed, we performed
various kinds of actions and points. Data where we
performed actions ten times per action and per point
were regarded as one data set. A data set was used
to create a classifier. We calculated the recognition
results from other data sets based on this classifier,
and we computed the accuracy rate and average er-
ror. We repeated this calculation for all data sets.

5.1.3 Experimental results

Nylon, cotton, table, and corkboard
Nine points and one kind (patting)
We performed actions on nine points where each
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Figure 10: Sewing accelerometers onto nylon fabric.

Accelerometers

Figure 12: Accelerometers attached to table.

center part divided the input area into nine zones.
The materials were nylon (both at the top and bot-
tom part), cotton, the quadrilateral table, and the
corkboard. The first kind of action was a patting.
We gathered six data sets (total of 540 actions). We
gathered five data sets (total of 450 actions) only for
the table.

Table 2 summarizes the results for the accuracy
rate, and Table 3 summarizes them for average error.

For example, the top-left value (65.6) in Table 2
lists the accuracy rate when the classifier was used
(created from the first data set by using J48graft) for
data in the other five data sets (total of 450 action

Figure 13: Corkboard.

Figure 14: Paper box.

data). The value that is under it (48.2 in the table)
is the accuracy rate when SMOreg was used. The
system regarded a point that was the closest to each
action point (nine points in this case) as a recognized
point. The top-left value (259.5) in Table 3 is the
average error (i.e., average distance from a correct
point to a calculated point) where the classifier was
used (i.e., created from the first data set by using
SMOreg) for the data in the other five data sets.
The accuracy rates, in all cases, for J48graft are
better than those for SMOreg. The average for all
accuracy rates is 66.3% for nylon (top). Most of the
misrecognized points adjoined a correct point. The
system misrecognized vertical points, and recognized
correctly horizontal points. The accuracy rate cal-
culated for the sixth data set based on the classifier
created by the sixth data set had a low value. It
appeared to be the cause of the poor accuracy rate.
Its average was 58.0% for nylon (bottom). The re-
sults ware higher when the accelerometers were sewn
onto the top. Most of the misrecognized points ad-
joined correct points, and were vertical in similar
to the points at of the top. The average for cot-
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Table 2: Result for accuracy rate (9 points and 1 kind of action (patting))

] ] [ Accuracy rate (%)
Material Classifier 1 5 3 ] 5 6 Ave.
Ja8graft || 65.6 658 722 698 700 54.7 | 66.3
Nylon (top) | gNOreg | 48.2 460 51.6 47.3 509 453 | 48.2
JaSgraft || 584 604 638 558 504 59.1 | 58.0
Nylon (bottom) | gniOreg || 38.0 37.3  30.0 22.9 342 384 | 335
J48graft || 53.6 647 669 542 42.0 56.0 | 56.4
Cotton SMOreg || 32.2 342 364 31.8 300 222 | 31.1
JaSgraft || 197 27.8 319 33.1 275 28.0
Table SMOreg || 225 214 207 244 222 24.0
J48graft || 25.8 191.1 36.0 33.3 416 356 | 3L9
Corkboard SMOreg || 23.8 209 19.1 220 220 229 | 218

Table 3: Results for average error

(9 points and 1 kind of action (patting))

. [ Average error (mm)
Material i 2 3 i 5 6 | Ave.
Nylon (top) 259.5  276.7 246.2 246.2 235.9 247.4 | 252.0
Nylon (bottom) || 307.6 319.6 377.0 324.4 312.0 315.0 | 328.9
Cotton 284.6 3125 300.0 282.3 268.0 333.1 | 296.7
Table 295.2  259.8 231.0 246.0 288.1 264.0
Corkboard 193.7 178.4 189.4 186.2 200.8 196.1 | 191.0

ton was 56.4%. The results for when accelerometers
were sewn onto the top of the fabric made of nylon
ware better than those for cotton. The accuracy rate
that was calculated for the fifth data set based on the
classifier created with the fifth data set was low, and
the fifth data set results were poor. The average for
the table was 28.0%, which was relatively low. The
system did not recognize the top-left point in many
cases. The accuracy rate calculated for the first data
set based on the classifier created with the first data
set was low, and the first data set results were poor.
The average for the corkboard was 31.9%. The ac-
curacy rate calculated for the first data set based on
the classifier created with the first data set was low,
and the first data set results were poor. The second
data set was also poor. It was difficult to achieve
accurate recognition because the input area was too
small. Moreover, the corkboard was the hardest ma-
terial used at this evaluation. The system correctly
recognized points vertically in many cases.

The average of all average errors was 252.0 mm for
nylon (top) when considering the results for average
errors. The average error needed to be less than 100
mm because the length of a hand that performs ac-
tions is approximately 200 mm. The dispersion of
values was low, but a value of approximately 800 mm

was calculated on rare occasions. The average for
nylon (bottom) was 328.9 mm. The average errors
for the bottom were greater those for the top. The
average for cotton was 296.7 mm. The results for ny-
lon were better than those for cotton and similar to
J48graft. The average for the table was 264.0 mm.
The dispersion of values was low. The average for
the corkboard was 191.0 mm, which was better than
that for nylon because it was smaller.

Nylon and cotton
Four points and two kinds (patting and push-
ing)

We performed actions at four points where each
center part divided the input area into four zones.
The materials were nylon (both at the top and bot-
tom) and cotton. The kinds of actions were patting
and pushing. We have gathered six data sets (total
of 480 actions).

Table 4 summarizes the results. The average of all
accuracy rates for nylon (top) is 77.3%. The system
misrecognized kinds of actions, but correctly recog-
nized positions. The accuracy rate calculated for the
third data set based on the classifier created with
the third data set was low, and the third data set
results were poor. The average for nylon (bottom)
was 60.5%. The system misrecognized positions, and
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Table 4: Results for accuracy rate (4 points and 2 kinds of action (patting and pushing))

l

Accuracy rate (%)

Material 1 2 3 1 5 6 | Ave.
Nylon (top) || 71.8 895 648 865 715 795 | 77.3
Nylon (bottom) || 60.3 583 57.0 595 555 72.5 | 60.5
Cotton 515 645 683 732 77.8 51.0 | 644

correctly recognized kinds of actions unlike the nylon
at the top. The average for cotton was 64.4%. The
results for where the accelerometers were sewn onto
the top of the fabric made of nylon was better than
those for cotton. The system did not recognize the
top-left point in many cases.

Table
Four points and two kinds (weak and strong
patting)

The material was the table. We performed actions
at four points where each center part divided the in-
put area into four zones. The kinds of actions were
weak patting and strong patting. We gathered six
data sets (total of 480 actions).

Table 5 lists the results. The average of all accu-
racy rates was 46.1%. The misrecognitions were not
particularly regular, but some of them correctly rec-
ognized kinds of actions.

Corkboard
One point and two kinds (patting and push-
ing)

The material is the corkboard. We performed ac-
tions at a point that was at the center of the cork-
board. The kinds of actions were patting and push-
ing. We gathered six data sets (total of 120 actions).

Table 6 summurizes the results. The average of all
accuracy rates is 83.1%. The accuracy rate calculated
for the fourth data set based on the classifier created
with the fourth data set was low, and the fourth data
set results were poor.

Corkboard
Two points and two kinds (patting and push-
ing)

The material was corkboard. We performed ac-
tions at two points that was at the each center of
part that is divided the input area into two zones
from side to side. The kinds of actions were patting
and pushing. We gathered six data sets (total of 240
actions).

Table 7 lists the results. The average of all ac-
curacy rates was 71.7%. The system misrecognized
positions, and correctly recognized kinds of actions.

Table 5: Results for accuracy rate in recognizing table
(4 points and 2 kinds of actions (weak and strong

patting))

Accuracy rate (%)
1 2 3 4 5 6
54.0 43.5 45.8 440 445 45.0

Ave.
46.1

Table 6: Results for accuracy rate in recognizing
corkboard (1 point and 2 kinds of actions (patting
and pushing))

Accuracy rate (%)
1 2 3 4 5 6
87.0 8.0 87.0 61.0 89.0 90.0

Ave.
83.1

Table 7: Results for accuracy rate in recognizing
corkboard (2 points and 2 kinds of actions (patting
and pushing))

Accuracy rate (%)

1 2 3 4 5 6 Ave.
67.0 595 88.0 66.0 745 750 | 71.7
Paperbox

Eight points and one kind (patting)

The material is the paper box. We performed ac-
tions at eight points where the center part divided
each side into two zones from side to side. The kind
of action was patting. We gathered six data sets (to-
tal of 480 actions).

Table 8 lists the results. The average of all accuracy
rates was 22.1%. The accuracy rate calculated for the
third data set based on the classifier created with the
third data set was low, and the third data set results
were poor. The misrecognitions were scattered.
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Table 8: Results for accuracy rate in recognizing pa-
per box (8 points and 1 kind of action (patting))

Accuracy rate (%)
1 2 3 4 5 6
20.8 25,5 15.8 275 30.8 125

Ave.
22.1

Table 9: Results for accuracy rate in paper box (4
points and 3 kinds of actions (patting, pushing, and
lifting))

Accuracy rate (%)

1 2 3 4 5 6 Ave.
41.7 23.5 477 23.7 252 44.7 | 344
Paper box

Four points and three kinds (patting, pushing,
and lifting)

The material was a paper box. We performed ac-
tions at four points that were the centers of each side
of the paper box’s. The kinds of actions were patting,
pushing, and lifting. We gathered six data sets (total
of 720 actions).

Table 9 lists the results. The average of all accuracy
rates was 34.4%. The accuracy rate calculated for the
second data set based on the classifier created with
the second data set was low, and the second data set
results were poor. The fourth and fifth data data set
results were also poor.

5.1.4 Consideration

We found from the results of evaluating the five
materials that the proposed method was more effec-
tive for soft material. The system could not recognize
many points in the hard material. Therefore, we need
to improve our proposed method for hard materials
like table tops.

There were some cases that the accuracy rate (i.e.,
calculated for one data set based on the classifier cre-
ated with the own data set) for their data become
lower. For that reason, the system needs to calculate
the accuracy rate that uses the classifier created with
its own data set, and raise alerts to gather learning
data again if the rate is too low.

There are also situations where the system does not
recognize certain points at all. If the system cannot
recognize certain points at all in the recognition step,
it needs to raise alerts to return to the learning step.

5.2 Setting interactive system
5.2.1 Experimental purpose

We carried out an experiment on system construc-
tion in the second experiment because it was impor-
tant for the fabricator to construct an interactive sys-
tem easily in this study. We investigated how long a
fabricator took to establish an interactive system and
whether he/she could do this effectively by using the
proposed system. We also examined what problems
occurred during the setting process. We found areas
we could improve with the proposed system from the
results.

5.2.2 Experimental setup

Participants set up an interactive system that was
designated by the author after the implemented soft-
ware was explained to them. The target system should
have recognized two kinds of actions (patting and
pushing) that were performed at two points on the
nylon fabric used in Section 5.1. The fabric had four
accelerometers sewn onto it with thread. The par-
ticipants were four males in their 20s, and they were
labelled “P1 - P4”. P1 was the author. P3 was famil-
iar with the characteristics of accelerometers, while
P2 and P4 were not. We have measured the time
from when the participants started to install the ac-
celerometers when they activated the software, which
was recorded as “T'1”. In addition, we measured the
time from when the participants started to gather the
learning data to when they activated the recognition
mode, which was recorded as “T2”. After they had
finished the settings, they performed each kind of ac-
tion at each point ten times. We counted the number
of correct answers out of a total of 40.

5.2.3 Experimental results

Table 10 summarizes the results. The units of
time in the results were minutes and seconds (i.e.,
“minutes : seconds”). The interactive systems that
were set up by P2 and P4 always output the results
notwithstanding no action. Therefore, they set the
system again. P2 set it from scratch again. Because
P4 had only fixed the lead cables with vinyl tape in
2 minutes and 43 seconds, his T1 was recorded as
“+2:43”. The “T1+4T2” of P4 (2nd) was the time
that was the T1 of P4 (1st) plus the T2 of P4 (2nd)
plus 2:43.

The average of all the participants times was 47
minutes and 43 seconds. The average of all the cor-
rect answers was 28 (70%). The average time except
for P1 (author) was 51 minutes and 22 seconds. The
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Table 10: Results for setting interactive system

. Time Number of
Participant T1 T2 | T1+T2 || correct (/40)
P1 31:10 535 | 36:45 34 (35%)
P2 (Ist) || 22:20 6:17 | 28:37 -
P2 (2nd) | 50:02 549 | 55:51 30 (75%)
P3 45:30  9:37 55:07 23 (57.5%)
P4 (Ist) || 34:10 7:20 | 41:30 -
P4 (2nd) || +2:43  6:16 | 43:09 || 25 (62.5%)

average number of correct answers except for P1 (au-
thor) was 26 (65%). Almost all the results for mis-
recognition by P1, P2, and P3 were related to kinds
of actions (i.e., almost all recognized positions were
correct answers).

The participants made some comments in question-
naires that they answered freely. P3 said that the sys-
tem should sound whenever a fabricator performed
actions as feedback, and the sounds should differ ac-
cording to each kind of action. P2 and P3 said that it
was hard for them to install the accelerometers with-
out tilting them. Note that none of the participants
said they could not construct such an interactive sys-
tem without the proposed system.

5.2.4 Consideration

P2 and P4 had not been able to set the interac-
tive system at first. It seems that why they failed
was because they roughly installed the accelerome-
ters. They sewed them too loosely. Therefore, the
state of the accelerometers changed, and the accel-
eration data were always over the threshold value.
Moreover, all the participants took too long to install
the accelerometers. To resolve these problems, we
need to make an attachment that will help to install
accelerometers onto surfaces. In addition, the system
needs to raise alerts when the states of accelerometers
change, not just when accelerometers malfunction.

The number of correct answers P3 gave was low. It
seems that there were for differences between patting
and the pushing. Therefore, the system needs to raise
alerts if the cross validation of learning data is poor.

6 Applications

We had exhibited two different showpieces using
our system in two long-term media-arts exhibitions.
The system consisted of a desktop PC (CPU Intel
Core 2 Quad 2.83 GHz with 3.25 GB of RAM), four

Figure 15: Snapshot of 34°_41.38’N 135°_30.7’E.

accelerometers (#KXM52-1050 XYZ £2 G), and two
microcomputers (Arduino Nano).

6.1 34°_41.38’N 135°_30.7’E

“34°_41.38'N 135°_30.7’E” was the title of a work
of art. This installation art filled an entire room. We
created the showpiece together with Kazunari Sako,
who is a conceptual artist. The exhibition was held
from August 10 to September 2, 2012 in the city of
Kobe in Japan. Figure 15 has a snapshot of the in-
stallation art. The two screens in the figure depict
of a newspaper page projected from two rear projec-
tors. When a visitor breathes onto the screen at left,
(Figure 16), characters, figures, and the lines around
the point of breathing move to the screen at right,
whose coordinates are the same (Figure 17).

The system for this installation was required to rec-
ognize both breathing actions and their intensities
and positions. In addition, since the system projects
approximately 12,000 objects, such as characters in
the 1920 x 1080 pixels, and visual effects were applied
to individual characters, the characters needed to be
recognized one by one. For that reason, the system
needed to precisely detect the positions where visi-
tors breathed. However, the proposed method only
detected approximate positions that visitors breathe
onto. Therefore, the system precisely detected the
positions with a method using a depth sensor (ASUSTek
Xtion PRO LIVE [16]). Although the system could
not recognize when visitors breathed onto the screen,
it could detect the positions and the timing of action
by integrating both methods. We tested and con-
firmed that the proposed method could extend con-
ventional methods, and integration could be easily
achieved by constructing this application.
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Figure 16: Breathing onto the screen.

Figure 17: Characters moving from left screen to right
screen.

6.1.1 System structure

The system structure is outlined in Figure 18. We
used Theaterhouse #TPW1200TK+60 for the two
screens, which is a material for both front and rear
projections, and placed the screens in frames that
were the size of a Japanese newspaper page (540 x
810 mm). An image was projected onto the screen
from the rear, and the accelerometers were installed
on the four corners of the back of the screen with
a bonding agent, as shown in Figure 19. The sys-
tem could detect breathing actions and their intensity
with the accelerometers. Additionally, it can detect
the approximate positions of actions. However, since
this showpiece required accurate positions of breath-
ing, we used an additional approach with a depth
camera to accurately detect the positions of visitor
heads. Our system acquired the height of the top of
the head from the depth camera, and it then output
the position of the mouth 200 mm below the top of
the head. The value of 200 mm was determined on

Microcomputer
Accelerometer
i < |

Depth Screen

Figure 18: Structure of 34°_41.38’N 135°_30.7’E.

Arduino
Nano

Accelerometers

Figure 19: Back of screen.

the basis of a preliminary experiment and was the av-
erage of differences between the top of the head and
the position of the mouth. In addition, the system
output the horizontal position of the mouth as the
center of gravity of the head acquired from the depth
camera. We used Xtion PRO LIVE as the depth
camera (see Figure 20).

6.1.2 Action recognition

When visitors moved their heads close to the screen,
their actions created fine waves that the accelerome-
ters detected. We established data where visitors got
close to the screen as a stable state. Furthermore, the
system recognized the intensity of breathing from the
amplitude of the detected waves.

When the system recognized an action, the char-
acters, figures, and lines around the mouth’s position
dispersed. The radius of dispersion was determined
by the intensity of breathing.
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Figure 20: Setting of depth camera.

6.1.3 Discussion

Many visitors had fun with the breathing aspect:
they enjoyed the phenomenon of viewing what they
could not see in daily life that the interactivity pro-
vided.

The action of breathing can be recognized by BY U-
BYU-View [7] or by installing a large number of sen-
sors on the screen. However, if the showpiece used
these methods, the image on the screen was often

coarse, or the sensors were visible as part of the screen.

The resolution of the image remained fine grained by
using our method, and visitors could read the char-
acters of the newspaper on the screen. Moreover, our
system could be installed more inexpensively than
livePic [9] or ThermoTablet [10].

Although the proposed method only detected ap-
proximate positions, it can be combined with other
systems that detect positions more precisely as was
previously stated. We tested and confirmed that our
method can be integrated with other methods that
detected user positions by using a depth camera.

6.2 White Parallel Small Space

“White Parallel Small Space (WPSS)” is an instal-
lation art piece filling an entire room at the Designer
Show House, which is an event at which artists repair
and arrange the rooms of an old building. We cre-
ated a showpiece together with Makiko Issha, who is
an interior coordinator. The exhibition was held from
October 13 to November 4, 2012 in the city of Osaka
in Japan. Figure 21 has two snapshots of our show-
piece. Two projectors projected countless white cir-
cles and three images onto drapes that had been hung
from wall to wall, as seen in Figure 22. The countless
white circles slowly dropped, like snowflakes. When a

Figure 23: Touching image.

visitor touched any of the three images (Figure 23),
the image he/she touched moved right, changed to
a video clip, and was played. Here, the image is a
thumbnail of the video clip.

The system for the installation needed to recog-
nize which of the three images had been touched. We
could not install any cameras due to space and con-
cept restrictions. This is because there was no space
behind the drapes and all devices used had to be in-
visible to visitors. Therefore, we used our method
individually without any other approaches to iden-
tify the position at which visitors had touched the
drapes.
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Figure 24: System structure of WPSS.
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Figure 25: Sewing on accelerometers.

6.2.1 System structure

Figure 24 outlines the system structure. The pro-
jector on the left has an ultra-short focus (RICOH
IPSiO PJ WX4130) and projects three thumbnails
and white circles. The other projector on the right
presents the movie after someone has touched one of
the thumbnails. The drapes are hung from the roof
and reach the floor. Four accelerometers are sewn
into the drapes in the form of a trapezoid (height:
950 mm, top: 1000 mm, and bottom: 250 mm), as
seen in Figure 25.

6.2.2 Action recognition

The system detects a touch action by the ampli-
tude of the waves that travel on the surface of the
drapes. Opening/closing the door of the room and
wind flows create fine waves on the drapes that the
accelerometers can detect. We established that the
data here were in a stable state.

The system detected the touched position using the
time it took for the waves to reach the accelerome-
ters. The drapes have characteristics where the waves
travel slower horizontally than vertically, which means
that the differences in when they arrive horizontally

at multiple accelerometers can be used to calculate
the touched positions, while there is little difference
when they arrive vertically. Therefore, it is easy to
recognize the position by using feature values that
are related to arrival timing.

All the devices are hidden from the view of visitors.
Although one projector is placed in a visible area, it
is obscured by an object, as shown in Figure 24.

6.2.3 Discussion

Visitors were intrigued that the drapes, which are
everyday objects, became interactive. The unexpected
contrivance surprised them, and delighted them as in
a magic show. The system was able to detect the
touched position by only using the proposed method.
There were few misrecognitions, although they did
occur, e.g., when visitors passed their hand across the
surface and the system moved an image that they had
not touched.

The room was small (1500 x 3700 mm), and the
wall and the drapes were close (700 mm). There-
fore, if we wanted to use a camera behind the drapes,
the area where the system could recognize touching
would be too narrow because the angle of the camera
view was limited. The proposed method could ap-
plied to a wide area that the system can recognize.
In addition, our method can obscure devices from au-
diences.

7 Conclusion

We proposed a system to add interactivity to art
showpieces that recognized actions, their intensity,
and the positions at which they had been performed
by attaching accelerometers to the surface of input
materials. The new system only used small accelerom-
eters and did not require specialized devices or cam-
eras. Moreover, the installation environment was not
restricted by the size of surfaces, and our method
could be integrated with other systems. We found
from the results of evaluating five materials that the
proposed approach was more effective with soft ma-
terials. Additionally, we tested and confirmed that
the proposed system worked well through two actual
cases of use and that it could be adapted to various
situations and restrictions.

In future, we intend to develop a system that in-
tegrates other kinds of sensors that depends on the
situation. If the system combines distance sensors
where a corkboard is the input surface, it should be
able to recognize that the pushed side of the board
approaches the posterior wall and the other side with-
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draws. The recognition rate should increase if micro-
phones are adopted in the system.

Moreover, it is likely that the proposed method will
be able to recognize the degree of intensity more pre-
cisely if the system also uses SMOreg to recognize
intensity. We intend to add additional functions to
the calibration software.
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A List of All Feature Values

Type of feature value Axis Window Size

mean X, y, z, norm | lsec, 0.5sec, 0.25sec
variance X, ¥, z, norm | lsec, 0.5sec, 0.25sec
maximum X, y, z, norm | lsec, 0.5sec, 0.25sec
minimum X, Vy, z, norm | lsec, 0.5sec, 0.25sec
peak-to-peak X, y, z, norm | 1sec, 0.5sec, 0.25sec
crossingcounts X, v, z, norm | lsec, 0.5sec, 0.25sec
difference from mean of every sensor’s peak-to-peak X, y, z, norm | lsec, 0.5sec, 0.25sec
order of variance X, ¥, z, norm | lsec, 0.5sec, 0.25sec
order of peak-to-peak X, y, z, norm | lsec, 0.5sec, 0.25sec
order of crossingcounts X, Vy, z, norm | lsec, 0.5sec, 0.25sec
order of difference from mean of every sensor’s peak-to-peak X, v, z, norm | 1sec, 0.5sec, 0.25sec
variance of variance per five data X, y, z, norm | lsec, 0.5sec, 0.25sec
variance of variance per ten data X, Vy, z, norm | lsec, 0.5sec, 0.25sec
mean of variance per five data X, ¥, z, norm | lsec, 0.5sec, 0.25sec
mean of variance per ten data X, y, z, norm | lsec, 0.5sec, 0.25sec
order of variance of variance per five data X, Vy, z, norm | lsec, 0.5sec, 0.25sec
order of variance of variance per ten data X, v, z, norm | 1sec, 0.5sec, 0.25sec
order of mean of variance per five data X, y, z, norm | lsec, 0.5sec, 0.25sec
order of mean of variance per ten data X, y, z, norm | lsec, 0.5sec, 0.25sec
difference of 1st and 2nd half (mean) X, y, z, norm | lsec

difference of 1st and 2nd half (variance) X, y, Z, norm | lsec

difference of 1st and 2nd half (maximum) X, y, z, norm | lsec

difference of 1st and 2nd half (minimum) X, y, z, norm | lsec

difference of 1st and 2nd half (peak-to-peak) X, y, z, norm | lsec

difference of 1st and 2nd half (crossingcounts) X, y, z, norm | lsec

difference of 1st and 2nd half

(difference from mean of every sensor’s peak-to-peak) X, ¥, 2, norm | lsec

division of 1st and 2nd half (mean) X, V, z, norm | lsec

division of 1st and 2nd half (variance) X, y, z, norm | lsec

division of 1st and 2nd half (maximum) X, y, z, norm | lsec

division of 1st and 2nd half (minimum) X, V, z, norm | lsec

division of 1st and 2nd half (peak-to-peak) X, y, z, norm | lsec

division of 1st and 2nd half (crossingcounts) X, y, Z, norm | lsec

division of 1st and 2nd half

(difference from mean of every sensor’s peak-to-peak) X, ¥, 2, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (mean) X, y, z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (variance) X, y, z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (maximum) X, y, Z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (minimum) X, y, z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (peak-to-peak) X, y, z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter (crossingcounts) || x, y, z, norm | lsec

each difference of 1st, 2nd, 3rd, and 4th quarter

: X, ¥, z, norm | lsec
(difference from mean of every sensor’s peak-to-peak) R

each division of 1st, 2nd, 3rd, and 4th quarter (mean) X, y, Z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter (variance) X, y, z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter (maximum) X, y, z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter (minimum) X, y, Z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter (peak-to-peak) X, y, z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter (crossingcounts) X, y, z, norm | lsec
each division of 1st, 2nd, 3rd, and 4th quarter

z, norm | lsec

(difference from mean of every sensor’s peak-to-peak) R
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Type of feature value Axis Window Size
difference among each sensor (variance) X, Vy, z, norm | lsec, 0.5sec
difference among each sensor (maximum) X, y, z, norm | lsec, 0.5sec
difference among each sensor (minimum) X, V, z, norm | lsec, 0.5sec
difference among each sensor (peak-to-peak) X, Vy, z, norm | lsec, 0.5sec
difference among each sensor (crossingcounts) X, y, z, norm | lsec, 0.5sec
difference among each sensor (mean of variance per five data) X, Vy, z, norm | lsec, 0.5sec
difference among each sensor (mean of variance per ten data) X, Vy, z, norm | lsec, 0.5sec
difference among each sensor (variance of variance per five data) || x, y, z, norm | lsec, 0.5sec
difference among each sensor (variance of variance per ten data) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (variance) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (maximum) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (minimum) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (peak-to-peak) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (crossingcounts) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (mean of variance per five data) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (mean of variance per ten data) X, Vy, z, norm | lsec, 0.5sec
division among each sensor (variance of variance per five data) X, y, z, norm | lsec, 0.5sec
division among each sensor (variance of variance per ten data) X, Vy, z, norm | lsec, 0.5sec
variance of each sensor’s arrival timing X, Y, Z, norm

difference of each sensor’s arrival timing X, Y, Z, norm

time from arrival timing to maximum X, y, Z, horm

time from arrival timing to minimum X, Y, Z, horm

which is bigger with respect to difference

between mean and maximum or minimum X, ¥, %, norm
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