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Abstract
We designed a new algorithm for reconstructing three-dimensional (3D) geometric diagrams. By extracting
the orthogonality of the coordinate axes, the contents of labels, the positional relationships between labels
and other elements, and direct and indirect connection relationships between elements, we define a score
function and derive the optimal parameters that minimize it. This allows the elements to be reconstructed
in 3D space and allows the system to create diagrams with different viewpoints. In our system, the
reconstructed elements are redrawn with explicit orthogonal coordinate axes. The user can directly move
the axes as an interface for changing viewpoints. The system allows the user to edit and attach elements
to the diagram interactively.
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1 Introduction

Diagrams depicting three-dimensional (3D) geo-
metric information, as shown in Figure 1, are fre-
quently used as a means of communicating informa-
tion that includes geometrical concepts, as well as
composition and structure, in fields such as math-
ematics, engineering and design.

In this paper, we propose a novel technique for
reconstructing 3D geometric diagrams from a sin-
gle image. We define a “3D geometric diagram”
as a diagram in which (1) geometric information
in 3D space is expressed by line segments, points,
and labels, (2) 3D coordinate axes are represented
by line segments or arrows, and (3) geometric in-
formation in 3D space is drawn by parallel projec-
tion. 3D geometric diagrams can often consist of
less geometric elements (such as line segments and
strokes) than 3D objects because they use labels
and assumptions to notate traditional 3D geomet-
ric representation.

We design a new algorithm for reconstructing
3D geometric diagrams. By extracting the orthog-
onality of the coordinate axes, the contents of the
labels, the positional relationships between labels
and other elements, and direct and indirect con-
nection relationships between elements, we define
a score function and derive the optimal parameters
that minimize it. There are various methods for
reconstructing 3D objects from images composed
of line segments or sketches (see Section 2). These
methods set the horizontal and vertical directions
of the input image as x and y axes respectively and
derive the depth direction (z coordinate). This can
be characterized as reconstructions in screen coor-
dinate system. On the other hand, our method
identifies the coordinate axes from among the line
segments in the input image and can be character-
ized as reconstructions in world coordinate system.
We could not find existing techniques of identify-
ing the coordinate axes. The feature of our method
is employing labels to identify the coordinate axes,
focusing that many of 3D geometric diagrams have
labels.

The elements are then reconstructed in 3D space,
which allows the system to create diagrams with
different viewpoints. Our system redraws the re-
constructed elements with explicit orthogonal co-
ordinate axes. Users can directly move the axes
as an interface for changing viewpoints. The sys-
tem allows users to edit and attach elements to the
diagram interactively with familiar 2D-like user in-
terface.

It is anticipated that our technique will be em-
ployed in many applications, such as the reverse en-
gineering of printed figures, improving impressions
by changing figure viewpoints, and when making
fair copies of hand drawn figures from the best

viewpoint. In addition, the trial-and-error process
used to adjust figures can be reduced by our tech-
nique in various situations, such as cases where
there is some overlap in a display when a new ele-
ment is added to a diagram with existing elements
(such as lines, points and text). Other situations
where the technique could prove useful include try-
ing out the visual effect of mirror image conversion
or orthogonality/non-orthogonality, or when visu-
ally integrating multiple diagram coordinate sys-
tems.

2 Related Work

Reconstructing 3D objects from 2D line
drawing

In the fields of computer vision and computer-aided
design (CAD), substantial research has been con-
ducted over the years into methods for reconstruct-
ing 3D objects from images composed of line seg-
ments or sketches. [1, 2] explain works of the early
studies for interpreting line drawings, including la-
beling lines to find planar surfaces and corners, in-
terpreting curved lines, and recovering depth direc-
tion using convex/concave and T-junction etc. as
constraints. Many techniques construct an energy
function using the heuristic regularity of images
such as parallelism, perpendicularity, and symme-
try [3, 4, 5]. Refinement techniques using hidden
lines to reconstruct more complex objects [6, 7, 8]
and inferring the back of the object from drawings
without hidden lines [9] have been also studied.

The methods of [1-9] set the horizontal and ver-
tical directions of the input image as x and y axes
respectively and derive the depth direction (z coor-
dinate). Masry et al. [4] select the group of three
line segments as tentative (object coordinate) axes
to reconstruction but this is not directly applicable
to the reconstruction of 3D geometric diagrams be-
cause the three lines are selected based on only 2D
angles of line segments and no information about
the origin in world coordinate system. Accordingly,
we have referred to the technique described in [4]
and have designed a new algorithm for 3D geomet-
ric diagrams that takes into consideration the char-
acteristics of geometric diagrams.

In recent years, many studies have been con-
ducted into various modeling interfaces. For ex-
ample, [10, 11, 12, 13] have proposed sketch-based
interface. These studies support creation and cor-
rection by the user of 3D models and 3D scenes, and
cannot be directly applied to our purpose since our
system takes a single image as input.
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Fig. 1: An example of executing the proposed system Co-Ordinate. The diagram on the far left is an
input image. The second diagram is an image redrawn by extracting elements from the input image. Users
can manipulate these diagrams interactively. Since the elements were reconstructed in 3D space, users can
create diagrams with different viewpoints (like those in the third and fourth position) simply by dragging
the coordinate axes.

3D information extraction from a single im-
age

In our proposed method, 3D information is ex-
tracted from a single 2D diagram image. Numer-
ous studies have been conducted on extraction and
recognition of objects from an image, and specific
research efforts aimed at the extraction of 3D infor-
mation from a single image have been introduced.

Most techniques employ specific characteristics
for extraction. Employing vanishing points etc.,
object size calculation [14] and a modeling interface
[15] are offered. Hoiem et al. created 3D pop-ups
employing category segmentation [16], while Jiang
et al. proposed a method for modeling symmetrical
3D buildings [17].

The above studies perform object extrac-
tion/recognition from images, focusing on photos of
natural and man-made objects, and the techniques
cannot be directly applied to extraction from arti-
ficial images such as diagram images.

Orthographic and oblique projection

We employ the (projected) orthogonal coordinate
axes as an interface for changing the viewpoints of
parallel projection. While parallel projection can
be classified into two major types, orthographic
projection and oblique projection, oblique projec-
tion has not been discussed significantly in the field
of computer graphics. One reason for this is that
schemas for 3D systems, such as camera rotation,
cannot be used with oblique projection. Research
in which oblique projection has been used includes
a study representing artificial sense [18] and a
study involving drawing of a map with high legibil-
ity [19]. However, these studies use oblique pro-
jection as a means of visualization, and they differ
from studies of interaction techniques that focus on
the oblique projection diagrams themselves.

A number of studies have previously been car-
ried out regarding the creation of new projections.
These include nonlinear projections that can be
manipulated interactively [20], techniques combin-

ing multiple views along a camera path [21, 22, 23],
studies proposing new camera models [24, 25], and
studies that make pseudo changes in projections
by warping the image [26]. However, in these
cases, it is hard to achieve the purpose of this re-
search, which is intuitive manipulation of oblique
projection parameters. The proposed system tar-
gets both orthographic and oblique projection and
provides an interface for manipulating viewpoints.

There are several interface techniques that can
be used to change viewpoints using widgets [27, 28],
these techniques are designed for the context of 3D
perspective scenery.

3 Reconstructing 3D infor-

mation from an image

Many existing diagram images depicting 3D ge-
ometric information were actually drawn with 2D
drawing software, and then stored in bitmap for-
mat. Our system takes a bitmap image as input,
reads off diagram elements from the image, and
then reconstructs the 3D geometric elements.

As indicated in Fig. 2, the reconstruction system
proposed in this paper is composed of four mod-
ules: label extraction, 2D element extraction, coor-
dinate axes identification, and 3D reconstruction.
The label extraction module reads off characters
from the input image, and then outputs the results
(a table of characters and bounds) along with the
image (without labels). The 2D element extraction
module extracts 2D geometrical elements (e.g., line
segments and points) from the image input to the
module, identifies the elements to which the label
belongs, and then saves the results as 2D data. The
coordinate axes identification module identifies the
coordinate axes from among the line segments in
the image based on the 2D and label data obtained
in the preceding process, and then saves the re-
sults as coordinate axes information. The 3D re-
construction module reconstructs the 3D geometry
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Fig. 2: Overview of our reconstruction system

from 2D data based on the identified coordinate
axes.

3.1 Label extraction

Numerous diagram images contain labels such as
’0’ to indicate the origin, ’X’ to indicate a coordi-
nate axis, and ’P’ to indicate a point label. We
designed our system to utilize labels for the follow-
ing processes. Our label extraction module first
performs binalizing and four-neighbor labeling, af-
ter which Tesseract optical character reader (OCR)
software is used to scan and analyze each label.

If the system passes over a label or makes reading
mistakes, the user would add or correct the char-
acters by dragging and inputting text. The user
would also apply more sophisticated OCR appli-
cations, including commercially available software
packages.

The label extraction module outputs the results
of the read text, along with the image with the
labels removed. Fig. 3 shows an input/output ex-
ample of the label extraction module.

3.2 2D elements extraction

The 2D element extraction module extracts 2D
geometrical elements from the image input to the
module, identifies the elements to which the label
belongs, and then stores the results as 2D data.
While the system allows the user to create and
specify 2D data, we implemented the function used
to read off segments and points from the input im-
age in order to automate and facilitate such tasks.
Segments are differentiated into solid lines and dot-
ted lines.

Both the Hilditch algorithm (for line thinning)
and the Hough transform (for detecting lines) are
applied. The position of the end of line segment,

Fig. 3: Example of input/output of label extrac-
tion module. (a) Input image. (b) Applying OCR
to the input image. The system outputs the read-
ing results (c) and the image with the label removed
(d).

along with the line thickness and type, are calcu-
lated from both the detected line data and the in-
put image. The position of the end points are de-
termined by searching for continuous (with 16-pixel
looseness) pixels from the set of pixels on the de-
tected lines. The thickness of the line segment is
found by searching for pixels in the direction per-
pendicular to the line segment. The line type is
determined to be dotted if the percentage of black
pixels in the line segment is less than 70 %, and
solid line if the percentage is 70 % or more.

Next, the points, actually filled-in circles, are ex-
tracted. The system searches for filled-in circles
present at the end points of the line segments. In
particular, the system creates a circle with its cen-
ter on the extracted line segment and a diameter
1.5 times the thickness of the line segment, so that
it passes through the end point of the line segment.
If the percentage of black pixels in the circle is
greater than a threshold value (95 %, in our study),
it is then determined that there is a point at the
end point of the line segment. From the extracted
2D elements, the system selects one as the element
to which the label belongs. Our algorithm first
searches for the point closest to the label, and then
checks whether or not the distance is less than the
threshold value. If such a point cannot be found,
the system searches for the nearest line segment.

The user can correct the extraction result if nec-
essary. There are numerous segment vectorization
methods [29, 30, 5]. By combining our algorithm
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with one of these methods, detectability, and ro-
bustness would be improved.

3.3 Identification of coordinate

axes

Most 3D geometric diagrams depict the coordi-
nate axes explicitly or implicitly in order to provide
spatial cues for human readers. In our method,
the coordinate axes identification module selects
a combination of three line segments as the or-
thogonal coordinate axes from a set of input line
segments. Using actual 3D geometric diagram im-
ages, we analyzed the characteristics of coordinate
axes and designed the algorithm described below
for identification use.

The candidates for coordinate axes are the solid
line segments (e.g., extracted in Section 3.2). Our
method calculates a score (Sseg) for each line seg-
ment that indicates the degree to which the line
segment has the features of a coordinate axis. The
Sseg is calculated as follows:

Sseg = Slen + Sdiam + Sxyz + So + Sfreq (1)

Slen : The longer the line segment, the higher the
possibility that it is a coordinate axis. We set Slen

= line segment length * α0, where α0 is a weight
coefficient. In the following terms section, weight
coefficients are used as a multiplier, just as in this
term.
Sdiam : The thicker the line segment, the higher the
possibility that it is a coordinate axis. The line
segment thickness obtained in Section 3.2 is used
here.
Sxyz : The shorter the distance between the line
segment and the labels X, Y or Z (if any), the
higher the possibility that it is a coordinate axis
(Sxyz=distance−1). Based on the results of label
extraction in Section 3.1, the system employs the
shortest distance between the line segment and the
X, Y or Z labels. The shorter the distance, the
higher the value.
So : The shorter the distance between the line seg-
ment and the label 0, the higher the possibility that
it is a coordinate axis. The shorter the distance be-
tween the line segment and the label 0, the higher
the value.
Sfreq : Based on the assumption that diagrams have
numerous line segments drawn parallel to the coor-
dinate axes, we then create a histogram of the 2D
angles of those line segments by applying a Gabor
filter [31] with 1 degree intervals and summing the
pixel values. We created a Gabor kernel using the
getGaborKernel function in OpenCV [32]. The pa-
rameters of the Gabor kernel are σ=8.0, λ=10.0,

Fig. 4: Histogram indicating the slope of line seg-
ments. The input image is Fig. 3. In this graph,
θ=0[degree] indicates the vertical direction, while
θ=90[degree] indicates the horizontal direction.

γ=0.5, and ϕ=0 (for more details about each pa-
rameter, see the OpenCV documentation).

Fig. 4 shows an example of the results obtained
when Fig. 3 was used as the input image, which,
is a histogram indicating a slope of line segments.
This histogram is roughly equivalent to that ob-
tained via Angular Distribution Graph (ADG) in
[4]. However, it should be noted that ADG takes
vectors as input, while our method takes the image
itself.

In determining coordinate axes, the combination
of the three line segments that maximize the follow-
ing score Saxes is identified as the coordinate axes
set:

Saxes = Ssum + Sdist + Sthick (2)

Ssum : Sum of Ssegs for three line segments.
Sdist : The shorter the distance between line seg-
ments, the higher the value.
Sthick : Differences in line segment thickness are
taken into account as well. The smaller the thick-
ness differences, the higher the value.

If the labels X, Y and Z exist, the system assigns
x, y and z, along with positive directions, to the
line segments based on the distances between the
line segments and the characters.

[4] also selects the group of three line segments
based on a discrete histogram of the 2D angles of
line segments. The selected group consists of the
tentative axes used locally to reconstruction. [4]
basically considered angles alone, and is, therefore,
not applicable to our case.

3.4 3D reconstruction

The 3D reconstruction module reconstructs a 3D
geometic diagram from the 2D data based on the
identified coordinate axes. The projection param-
eters are calculated using the line segments for the
coordinate axes.

The position (x0, y0) of the 3D origin is placed
on the canvas is the position where (0, 0, 0) is pro-
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jected, and the vector (a, b), where the x axis are
placed on the canvas, are regarded as the vectors
where (sx, 0, 0) is projected. The vectors (c, d) and
(e, f) are also regarded that y axis (0, sy, 0) and z
axis (0, 0, sz) are projected respectively.

Here, sx, sy and sz indicate the scales of the
projection axes. sx, sy and sz are values that can
be changed by the user (Section 4), and which are
initially set to 1.0. The projection of the 3D space
(X,Y, Z) onto the canvas space (x, y) is given by
the following formula:

(x, y) = (a, b)X/sx+(c, d)Y/sy+(e, f)Z/sz+(x0, y0)
(3)

where (a, b), (c, d) and (e, f) are the tip of the x, y
and z axis on the canvas respectively. Conversely,
the canvas space (x, y) can be converted to projec-
tion rays in 3D space by using the parameter t and
the following equation:

(X,Y, Z) = (x− x0, y − y0, 0) (4)

+ (cf − de, eb− fa, ad− bc)t

Reconstructing 3D geometric information corre-
sponds to determining the proper parameter t for
each element comprising the diagram. Since the
line segments are the key to the reconstruction,
and since each line segment has two end points,
it is necessary to find the proper parameter t for
each end point.

Factors such as the position and the connec-
tion relationship between line segments can be ex-
tracted from images. Therefore, we take the ap-
proach of using these, defining a score T for rele-
vance, and then searching for a parameter t com-
bination that yields an optimal score. The score T
is calculated as follows:

T = Tparallel + Tdirect + Taxes + Tindirect (5)

We then employ simulated annealing [33] to search
for the parameter t combination that minimizes the
score T . Each term is as follows:

Parallelism of line segments

Parallel line segments are evaluated so that these
segments are parallel in 3D space as well. At initial-
ization, the system collects parallel line segments,
including the coordinate axes. During evaluation,
the angle between the line segments is calculated
as a penalty. Just as in Section 3.3, each term is
multiplied by a weight coefficient (β0).

Direct connection relationships

Direct connection relationship means a case where
two line segments connect at common point. For

Fig. 5: An example of direct and indirect connec-
tion relationships.

Fig. 6: Indirect connection relationships. (a) Our
system determines that a relationship exists if the
geometrical center of gravity of the segments A-D
(blue) lies on a certain segment. (b) The distance
between the center of gravity and the segment is
calculated as a penalty.

example, two line segments L1 and L2 in Fig. 5
have a direct connection relationship. Evaluation
is performed to achieve the shortest distance (in 3D
space) between each pair of line segments with a
connection relationship. At initialization, the sys-
tem constructs a network graph to indicate the con-
nection relationships between line segments. All
of the line segments are registered in the graph
as nodes, and line segments that have a connec-
tion relationship are linked. This link is equivalent
to an edge in terms of graph theory. Determin-
ing whether line segments A and B have a connec-
tion relationship is performed by (1) determining
whether the distance between line segment A and
either end point of line segment B is at or below
the threshold value, or (2) determining whether the
distance between line segment B and either end
point of line segment A is at or below the thresh-
old value. In this paper, the threshold value is set
to 12 [pixel]. The graph is an undirected graph.
During the evaluation process, the system searches
for a pair of nodes connected by an edge in the
network graph, after which the sum of the mini-
mal distances between line segments in 3D space is
calculated as a penalty.

Axes segments

Distance indicating how far the position in 3D
space of the segment identified as the coordinate
axis is shifted from the actual coordinate axis. In
the case of the x axis, using two end points (x,
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y, z) of the line segment,
√

y2 + z2 is used as the
evaluation value.

Indirect connection relationships

Indirect connection relationship means a case
where the center of a shape is on a line segment.
Evaluation is then performed while taking into ac-
count indirect connection relationships to ensure
that these connections are maintained. At the
term Tdirect , the direct connection relationships are
evaluated. However, it is possible for a line seg-
ment to pass through the center of a shape con-
sisting of multiple line segments without having a
direct connection relationship between those line
segments, even though a relationship between the
overall shape and the crossing line segment can be
seen. An example of this can be seen in the bottom
of the pyramid shown in Fig. 1, which is comprised
of line segments (the shape), and the line segment
that passes through the center of that rectangle.
Rectangles (a group of four line segments) R1, R2

and R3 in Fig. 5 are also examples of indirect con-
nection relationships. Each rectangle has an in-
direct connection relationship with z axis as the
center of each rectangle is on the z axis.

We then implement the automatic search func-
tion to detect indirect connection relationships. In
this process, the system extracts the cycles (graph
theory term) from the network graph constructed
above. Among these, the applicable cycles are
taken to be those in which a line segment identified
as a coordinate axis is not included in a node, and
those in which the number of elements is four or
more. The geometrical center of gravity is calcu-
lated for the figure composed of the nodes of each
applicable cycle. If there is a line segment touch-
ing the geometrical center of gravity of the cycle,
a relationship is determined to exist (Fig. 6 (a)).
The user can switch the relationship of each indi-
rect connection relationship on or off as desired.

During evaluation, the system calculates the dis-
tance between the geometrical center of gravity of
the cycle in 3D space and the line segment that it
passes through as a penalty (Fig. 6 (b)).

4 User Interface

In this section, we will describe our user inter-
face for manipulating a 3D geometric diagram. As
shown in Fig. 7, our user interface resembles con-
ventional drawing tools. The top-level layout of the
user interface consists of a tool panel, canvas, and a
data table. The user selects a desired element from
the tool panel, and places it on the canvas. He or

Fig. 7: Top-level layout of user interface.

she can then edit elements on the canvas, as well as
correct data directly through the data table. The
coordinate axes are displayed in the form of arrows
on the canvas. After reconstructing the 3D infor-
mation from the diagram image, the extracted in-
formation is also redrawn with explicit coordinate
axes. The user can interact with the diagram by
directly moving the axes to change viewpoints.

The system allows the user to edit and attach
elements to the diagram interactively with 2D-like
user interface that allows him or her to create and
edit points, lines and labels. The following sections
describe the specific user interface for each of these
elements.

To ensure that all elements maintain their cor-
rect positions even if the coordinate axes are
moved, all elements must be associated with their
3D positions. In our method, each point has both a
2D position p(x, y) and a 3D position P (x, y, z) for
position information. When the user determines a
position p in the canvas space by manipulating a
point, the system calculates the proper 3D position
P .

4.1 Coordinate axes

In the initial state, the canvas displays the ar-
rows indicating the coordinate axes, and characters
0, X, Y and Z, which indicate the origin and coordi-
nate axes (Fig. 7). If the user drags the area near
the origin, all of the elements will be translated.
When the user moves the coordinate axes, all of the
elements move as well, while retaining their spatial
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Fig. 8: Movement of coordinate axis tip.

coordination. From the coordinate axes, the sys-
tem calculates projection parameters as shown in
Equation (3).

If the tip of a coordinate axis is dragged while
pressing the Ctrl key, movement will be performed
in a fixed direction. If dragging is done while press-
ing the Shift key, the direction will remain fixed
and only the coordinate axis will be lengthened or
shortened (Fig. 8); This can be achieved by chang-
ing the scales sx, sy and sz in accordance with the
movement amount.

4.2 Points

When creating a point at position p, the intersec-
tion P between the parallel projection rays (Equa-
tion (4)) from the position p in the canvas space
and the zx plane (y = 0) is taken to be its position
in 3D space. When a point in canvas space touches
a line segment already present on the canvas, the
position obtained by linear interpolation between
the 3D positions of both ends of the line segment
is assigned to P .

4.3 Lines

The 3D positions of the end points are deter-
mined using the same method as described in Sec-
tion 4.2. If either end point (indicated here as p1)
snaps to an already existing point or line segment
during translation of a line segment on the canvas,
the 3D position of the existing element is desig-
nated as P1.

4.4 Labels

Labels are characters with attachment informa-
tion. Users can attach a label to any point or line
segment by dragging. When a label is in the at-
tached state, its display position on the canvas is
automatically calculated so that it will be posi-
tioned close to, but not overlapping its element.

Labels do not have 3D position information, and
simply use the 3D information of the attached point
or line segment indirectly. When displaying labels
on the canvas, the system takes the distance with

the attached element as a score, and then searches
for a position where the score is low. A penalty is
added to the score if there is overlap with elements
other than itself in the canvas space.

5 Experimental Results

and Discussion

We implemented the system for extracting infor-
mation from an image described in Section 3, along
with the interactive interface described in Section
4. The weight coefficients are α0 = 100, α1 = 100,
α2 = 10−1, α3 = 10−1, α4 = 100, β0 = 105,
β1 = 101, β2 = 105, and β3 = 103. A triplestore
database (example of good reading [34]) was used
as the data format output by the information ex-
traction system, and the input/output data format
for the interactive manipulation system. The re-
sults of extracting information from the image can
be passed directly to the interactive manipulation
system. A triplestore database has the advantage
of allowing the data to be flexibly expanded. On
the other hand, it is possible to recalculate 3D po-
sition information by outputting all or part of the
information from the interactive manipulation sys-
tem as an image, and then re-inputting that image
to the information extraction system. The user can
consider the output image as a re-input image and
can complete processing only by image data. The
following section describes and discusses the results
of executing the system for extracting information
from images and the interactive manipulation sys-
tem.

5.1 System for extracting infor-

mation from an image

As shown in Fig. 1 and Fig. 9, 3D information
can be reconstructed for a number of 3D geomet-
ric diagram images. Fig. 9 includes examples of
printed figures images and images made by scan-
ning and hand-drawing coordinate axes to line-
drawing. Since the system builds its geometric
topology at the reconstruction process, hidden line
and surface removal would be possible. At the bot-
tom of Fig. 9, although this image can actually
have multiple interpretations, our algorithm output
the one like the third and fourth images based on
our assumptions for 3D reconstruction. We found
some cases that need user correction, as shown in
Fig. 10.

The system was designed so that, when calculat-
ing the score Sseg in Equation (1) of Section 3.3, it
is possible to adjust the contribution of each term
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Fig. 9: Experimental results. The far left is an input image. The second is an image redrawn by extracting
elements from the input image. The third and fourth are diagrams with different viewpoints.

using a weight coefficient α. Thus, by trying var-
ious coefficient adjustments, the authors learned
that Sxyz , i.e., the distance between the line seg-
ment and the characters X, Y and Z, was impor-
tant when identifying coordinate axes. It can be
presumed that this is due to the communications
technique of promoting recognition of coordinate
axes by placing arrows and characters in close prox-
imity with each other on the diagrams.

We implemented our system using the Python
programming language and executed on Mac OS
X (CPU: 3.4GHz Intel Core i7, Memory: 8GB
1333MHz DDR3, GPU: AMD Radeon HD 6970M
1024MB). Table 1 shows the calculation time for
processing our algorithms. The 3D reconstruction
module was dominant and the iteration counts of
simulated annealing were 15,000 and 4,000 times

respectively. While Intel Core i7 is multi-core CPU,
we did not perform program parallelization. As
a result of trying to tune parameters, the simu-
lated annealing tends to converge successfully when
weight coefficients are β2 ≥ β0 > β3 > β1. Fig. 11
shows convergence of the simulated annealing that
takes Fig. 1 as input. From (a) to (f) in Fig. 11,
iteration counts are 2,500, 5,000, 75,000, 10,000,
12,500, and 15,000 respectively.

5.2 Interactive manipulation sys-

tem

Our direct manipulation interface enables repre-
sentation of all (single) parallel projections simply
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Fig. 10: Cases which need user correction

Table 1: Calculation time [s]

Input image Fig. 1 Fig. 3

Label extraction 2.8 1.5

2D elements extraction 17.6 7.5

Axes identification 29.2 16.6

3D reconstruction 571.5 25.8

by dragging the tip position of the coordinate axes,
as well as seamless and free crossing between paral-
lel projections. For example, if the angles between
two of three coordinate axes are all 120 [degree],
then the result is an isometric projection. Further-
more, if the angles between x and z axes and z and
y axes are 45 [degree] and the angles between y and
x axes is 270 [degree], then the result is the cavalier
projection.

Our tool can change viewpoint efficiently. For
example, if a conventional 2D drawing tool is em-
ployed to change the second diagram into the third
diagram in Fig. 1, the user must then move numer-
ous line segments, change their forms, and move
both points and labels. In contrast, if the user in-
terface of this system is used, the same changes
can be made simply by dragging the tip part of
the x axis. Since the intermediate states are dis-
played while the tip of this coordinate axis is being
dragged, the user can search continuously for the
most suitable projection parameters. This tech-
nique rejuvenates the diagram manipulation pro-
cess and makes possible large increases in efficiency.

6 Conclusion and Future Is-

sues

In this paper, we proposed a novel technique of
reconstructing 3D geometric diagrams from a single
2D image. In fields such as mathematics, engineer-
ing, and design, diagrams depicting 3D geometric
information are frequently used as a means of com-
municating information that include geometrical

Fig. 11: Convergence of the simulated annealing.

concepts, composition and structure. Our system
has broad applicability to platforms such as elec-
tronic publishing and Web applications.

While the current implementation applies to
simple elements such as points and lines, we believe
that the practical utility of this technique has been
successfully demonstrated. There is no doubt, how-
ever, that its adaptation to elements such as curves
and surfaces will contribute to further development
of diagram representation techniques. For example,
based on the assumption that each curve is planar,
it should be possible to reconstruct curve elements
by first reconstructing line segments connecting the
two curve endpoints, and then projecting the curve
to applicable plane [4]. Development of comprehen-
sive techniques for curves, such as curve extraction,
reconstruction and interfaces, will be the target of
our future work.

Furthermore, if annotations can be added to
the diagram manipulation interface, it may enable
more intuitive manipulation. In the future, we will
examine and analyze the potential for using an-
notations, including techniques for adding annota-
tions and performing 3D modeling [35, 12]. Other
possible subjects include developing techniques for
automatically setting the optimal viewpoint for di-
agrams, and for creating new diagram representa-
tions by applying the interface proposed in this pa-
per.
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