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Abstract 
In most cases, earthenware is broken when it is excavated from ruins. This situation requires restoration for 
assembling the earthenware's pieces. The point clouds measured by a three-dimensional device are useful to 
restore the earthenware. Some methods to find adjacent pieces of earthenware using a computer have been 
proposed. These methods aim to restore broken earthenware by connecting adjacent pieces with using digital 
data. If, however, earthenware with large missing portions is restored, it is impossible to estimate the adjacent 
piece using local adjacency. Due to this, it is necessary to estimate the whole shape of earthenware. It is also 
possible to continue sequential local estimation for estimating whole shape of earthenware, but the distortion 
occurs in many cases. In this paper, we propose a method to estimate the whole shape of earthenware with 
quadric surfaces. Since most earthenware is produced to be as close as rotational shapes, quadric surfaces are 
suitable to represent rotational shapes. In our method, the uneven pattern on the surface is removed in the first 
step according to the Taubin's smoothing method. Next, the point cloud from which uneven patterns are removed 
is divided into several groups. After that, each point cloud is fitted to quadric surfaces represented by the 
algebraic equation. Finally, the sequences of points generated from quadric surfaces are interpolated and the 
free-form surfaces corresponding to the surface of the earthenware are generated. 

 
 

1.  Introduction 
In most cases, earthenware is broken when it is excavated from 

ruins. Generally, all processes from classification of earthenware to 
assembly and restoration are done manually. Therefore, it takes much 
time to restore a large number of pieces of broken earthenware. The 
restoration also requires technical knowledge and experience and 
restoration work of a relic becomes heavy burden in the archaeological 
field. Moreover, manual restoration raises the risk for damaging 
earthenware pieces. In recent years the researches have been carried 
out to support earthenware restoration work by measuring earthenware 
with a three-dimensional measurement device and connecting 
earthenware pieces by using measured data [1-11]. 

Restoration of earthenware is classified into two types: one is to 
restore actual earthenware and the other is to create replicas. If 
earthenware is so precious to be designated as important cultural 
properties and if their replicas are created, it will be possible to exhibit 
them at different exhibition halls at same time. When replicas are 
created, it is also necessary to interpolate missing portions as much as 

possible to restore the correct condition of earthenware. 
For interpolating missing portions of earthenware using the 

measurement data, a method to extract the portions from the peripheral 
shapes has been proposed [12]. In [12], however, it is difficult to 
restore missing portions because the shape and size of the missing 
portions have some restriction. In addition, if surfaces for the missing 
portions are generated from the peripheral surfaces, the whole shape 
might get distorted.  

In this paper, we present a method to estimate earthenware’s surface 
shape even if the surface data is incomplete. In our method, the point 
cloud is measured by a three-dimensional measurement device. After 
uneven patterns are removed from the point cloud [13], it is 
approximated for a quadric surface and the center axis of the surface is 
extracted. After that, to generate precise surfaces, the point cloud is 
divided into several groups according to the center axis. Then, each 
group is fitted to a suitable quadric surface. Finally, a free-form curve 
mesh is created from quadric surfaces and a free-form surface mesh is 
created from the free-form curve mesh. Thus, the complete 
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earthenware surface is represented by free-form surfaces. As a result of 
evaluating the distance between the measurement point cloud and the 
generated free-form surface, good results were obtained. Since all parts 
of the shape are defined as quadric surfaces, the shape is not distorted, 
and the normal vectors or cutting faces of any part of the earthenware 
surfaces can be easily obtained. Such information can be used not only 
for reproduction of the shape but for analyses upon creation of 
measured diagrams of earthenware.  

 

2. Related Works  
2.1 Removal of uneven portions 

If a surface is generated from the polygon created from the point 
clouds of earthenware without processing the point cloud data, the 
quality of the generated curved surface becomes low, because uneven 
patterns remain. Due to this, the uneven pattern is regarded as noise of 
earthenware and our proposed method performs the smoothing process 
to remove the uneven pattern. Generally, the method of low-pass filter 
smoothing is used for this processing. This paper, however, uses the 
Taubin’s method to create a smooth spherical shape since the Taubin's 
method based on the Laplace transform formula [13] can be executed 
in a short time. 

 
2.2 Quadric form and ellipse fitting 

As the method of fitting a quadric form to a point cloud, Fitzgibbon 
et al. [14] presented the method to fit an ellipse to two-dimensional 
point sequence. To be more specific, a quadric form is represented by a 
two-dimensional curve that minimizes the distance between the point 
sequence and the curve by using the Lagrange multiplier method. This 
method is solved by applying the elliptical constraint to the Lagrange 
multiplier method. Unfortunately, the purpose of Fitzgibbon et al. [14] 
is to approximate all points by a single ellipse. If the Fitzgibbon’s 
method is applied to our method, complex shapes such as earthenware 
must be represented with one quadric surface. Due to this, we judged 
that it is difficult to apply the Fitzgibbon’s method directly to 
three-dimensional pieces of earthenware. 
 
2.3 Quadric surface fitting to point cloud 

Douros presented the method [15], which extends the method of 
Fitzgibbon et al [14] to three-dimension and fits quadric surfaces to 
three-dimensional point clouds. The Douros’ method defines the 
quadric form as a general one, and in the same manner as of the 
Fitzgibbon’s method, point clouds are fitted to a quadric surface locally 
by using the Lagrange multiplier method. To be more specific, a 
quadric surface is fitted to a portion of a point cloud. The Douros’ 
method projects points onto a quadric surface and calculates the 
curvature of the projection position as the curvature of the point. The 
Douros’ method does not mention how to use curvature. He plans to 
use curvature in order to drive a 3D matching algorithm. The Douros’ 
method generates a lot of small quadric surfaces and does not consider 
the continuity of surfaces. Moreover, his method cannot handle the 

shape that has missing parts because it is not necessary to know 
elements except curvature. Therefore, his method cannot be applied 
directly for fitting surfaces from the earthenware whose portions are 
missing. 

 

2.4 Classification of surfaces 
Only a few CAD software applications can support all kinds of 

quadric surfaces as the shape representation. Due to this, quadric 
surfaces may be approximated by free-form ones when the quadric 
surface appear. When quadric surfaces are converted to free-form ones, 
several processing are required: quadric surface division, creation of 
four-sided regions, or acquisition of tangent vectors or normal vectors. 
These processing are required to be divided depending on the type of 
quadric surfaces. In order to classify quadric surfaces, it is necessary to 
convert the form of Equation (1) of a quadric surface represented by a 
general quadric to the standard quadric form such as the one shown in 
Table 1．As the conversion method, principal-axis transformation 
described in section 2.5 is introduced. 
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When general quadric surfaces except particular shapes such as 

imaginary surfaces, planes or straight lines are written in the standard 
form, they are classified as shown in Table 1. When the surface shape 
of general earthenware is considered, it is available to approximate it 
by cone, ellipsoid, one-sheet hyperboloid, two-sheet hyperboloid, 
hyperbolic paraboloid and elliptic cylinder. 
 

Table 1.  Standard forms of quadric surfaces 
Name Standard form 
Cone ax2 + by2 − cz2 = 0 

Ellipsoid ax2 + by2 + cz2 = 1 
One-sheet hyperboloid ax2 + by2 − cz2 = 1 
Two-sheet hyperboloid ax2 − by2 − cz2 = 1 

Elliptic paraboloid ax2 + by2  =  z 
Hyperbolic paraboloid ax2 − by2  = z 

Elliptic cylinder ax2 + by2 = 1 
Hyperbolic cylinder ax2 − by2 = 1 
Parabolic cylinder ax2 = z 

 
Quadric surfaces can be parametrically expressed by using two 

angle parameters for the coordinate of a point on a curved surface. The 
parametric expression varies depending on the classification of quadric 
surfaces. Equations (2) and (3) show parametric expressions of quadric 
surfaces. 

 
 

(1) 
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Ellipsoid: 
φθ sincosAx =   πθ 20 ≤≤  

  φθ sinsinBy =   πφ 20 ≤≤              

φsinCz =  

 
One-sheet hyperboloid: 

φθ coshcosAx =   πθ 20 ≤≤  

φθ sinhsinBy =   πφπ ≤≤−           

φsinhCz =  

 
2.5 Principal-axis transformation 

This section describes principal-axis transformation, by which 
general form of quadric surfaces shown in Equation (1) is transformed 
to the standard form in order to classify quadric surfaces described in 
section 2.4. Equation (1) is transformed to an algebra-style equation (4) 
by using the following matrix βα , : 
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Since matrix α  is defined as a real symmetric matrix, using 
orthogonal matrix P  enables diagonalization like Equation (5). An 
orthogonal base is used in the Lagrange multiplier method as well as 
the principal-axis transformation. In this paper, an orthogonal base is 
calculated by using the Gram-Schmidt orthogonalization. 
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where 
321 ,, λλλ  are eigenvalues of matrix α . 

 
When the solution of 0=+ βαX  is X , X  is a vector that moves 

on a quadric surface and P  is a matrix that rotates on a quadric 
surface. 

If the rank of matrix α  is 3, quadric surfaces are central quadrics. 
If the rank is 1 or 2, quadric surfaces are non-central quadrics. If the 
center exists, the quadric surface should be rotated after it is moved. If 
the center does not exist, the quadric surface should be moved after it is 
rotated. This enables transformation of Equation (1) to the standard 
form. Table 2 shows the classification of quadric surfaces and their 
ranks. 

Table 2.  Quadric surfaces and their ranks 
Name Rank 
Cone 3 

Ellipsoid 3 
One-sheet hyperboloid 3 
Two-sheet hyperboloid 3 

Elliptic paraboloid 2 
Hyperbolic paraboloid 2 

Elliptic cylinder 2 
Hyperbolic cylinder 2 
Parabolic cylinder 1 

 
2.6 Local surface fitting with octree 

Ohtake presented a method [16] that fits a local area of a point cloud 
by using an implicit function. An original point cloud is segmented by 
an octree method. If a surface cannot be obtained within the specified 
tolerance, the cell is subdivided sequentially. Since surface fitting is 
performed locally from the point set within the cell, the whole shape 
can be represented by blending of local surfaces. Therefore, it is 
unclear whether a principal axis can be derived, so that the whole 
surface shape does not consider a surface of revolution. In addition, 
their method requires the normal vector for each point. Therefore, it is 
necessary to estimate the normal vector on all points. This means that 
the calculation cost increases. As the result, their method cannot be 
applied directly to fit surfaces from the earthenware as rotational 
shapes. 
 

3. Proposed Method 
3.1 Removal of uneven portions on earthenware 

The smoothing technique [12] based to the Taubin's method is 
applied to the polygon model created from the point cloud. To be more 
efficient, some parameters in the transfer function is changed. 

In Fig. 1, the polygon model in the left is created directly from the 
point cloud, and the polygon model in the right is smoothed by 
applying the smoothing method for 1,000 times. It is obvious that most 
of the uneven portions are removed. In the following description, 
polygon and point clouds indicate those after smoothing, unless 
otherwise specifically noted. 

 

 
Fig.1 Polygon created from point data and smoothed polygon 

 
3.2 Quadric surface fitting 

We paid attention to the fact that earthenware surfaces are close to 
the rotational shapes. If they are rotational shapes, their cross sections 
cut by a plane orthogonal to the principal axis will be ellipses. A 

(2) 

(3) 
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quadric surface is well-known as a shape whose cross section is elliptic. 
If a part of a quadric surface can be determined, its rotational shape can 
be defined. This means that, even if some portions of a point cloud are 
missing, they can be interpolated easily from the rest of the point cloud. 
With these reasons, for estimation of the surface shape of earthenware, 
quadric surface fitting is appropriate and the technique is examined. 
General approach of the quadric surface fitting is to apply the least 
squares method to the Euclidean distance between the point cloud and 
the quadric surface. In the least squares method that minimizes the 
Euclidean distance between the point cloud and the quadric surface, 
the evaluation function is non-linear. Therefore, to obtain a solution, it 
is necessary to use the Levenberg-Marquardt law or the Newton's 
method. In these methods, the initial values are important factors. It is 
difficult, however, to set such initial values of quadric surfaces from 
earthenware whose manufacturing precision is low. Therefore, these 
methods are difficult to apply to estimate the surface shape of 
earthenware. 

To determine the distance between the point and the quadric surface 
algebraically, the Lagrange multiplier method is effective. In order to 
apply the method to earthenware, it is necessary to consider 
hyperboloids, paraboloids or elliptic cylindrical surfaces as well as 
ellipsoids. Therefore, in our method, the extended method by Douros 
[15] is used for quadric surface fitting. In addition, by adding new 
constraints, quadric surface fitting is performed using two types of 
accuracy.  

For computing the coefficients of Equation (1), the Lagrange 
multiplier method is used. The details of the solution are provided in 
Appendix, Problem of the Lagrange multiplier method. In order to 
solve the Lagrange multiplier method, it is necessary to indicate the 
constraint expression. This paper uses Equation (6) of the Douros 
method [15] as the first constraint for Equation (1): 

 
1222 =++ wvu                           (6) 

 
Douros et al. applied Equation (6) as a constraint because the 

solution cannot be obtained within the specified tolerance although the 
constraint of Equation (8) gives the mathematically optimal solutions. 
For the same reason, we use this constraint of Equation (6) to generate 
quadric surfaces. Equation (6) is expressed in the form of Equation (7) 
using the matrix C : 
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When Equation (7) is set as the constraint, matrix C  is calculated 

as follows:  
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When the Lagrange multiplier method is used, Equation (8) gives 

the mathematically optimal solution. Therefore, Equation (8) is applied 
to the second constraint. Douros et al. did not apply this constraint 
because the solution cannot be obtained within the specified tolerance 
although the constraint gives the mathematically optimal solutions. 

In our method, Equation (8) is introduced to calculate the virtual 
principal axis. The virtual principal axis is described in the next section. 
To determine a virtual principal axis, it is necessary to divide a point 
cloud into groups. Since Equation (8) is introduced as the constraint 
only for the estimation of the principal axis of the quadric surfaces, it is 
possible to set a larger tolerance.  

 
12222222222 =+++++++++ dwvurqpcba         (8) 

 
Matrix C  is calculated as follows and represented by an expression 
similar to Equation (7). 
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In this paper, as Equations (6) and (8) are set as constraints and the 

Lagrange multiplier method is used to solve the general formula of 
quadric surfaces (1). Using the method described in section 2.4, 
Equation (1) is transformed to the standard quadric form as shown in 
Table 1. Then the quadric surfaces are classified as described in section 
2.5 to obtain the quadric surface information. 
 
3.3 Determination of principal axis 

In our method, a point cloud is divided into groups and an 
earthenware surface is defined as several pieces of quadric surfaces. 
When a point cloud is divided, the division along an axis must be 
determined. The principal axis is suitable if all of the point clouds can 

(7) 
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be fitted to one quadric surface. Quadric surfaces contain at least one 
principal axis without the presence of the surface central axes. This 
means that, even if a point cloud is fitted to any curved surface, it is 
possible to specify the principal axis. In addition, even if a quadric 
surface distant from the point cloud is calculated, the created quadric 
surface is a rotational shape and therefore its principal axis will not be 
different so much.  

As the constraint for a quadric surface fitting, our method introduces 
Equation (8) to determine the principal axis that can pass through the 
principal rotational axis. This is because Equation (6) is insufficient 
condition to derive the suitable principal axis. Consequently, as the 
constraint condition for a rough principal axis, both Equations (6) and 
(8) are verified to be appropriate. Fig. 2 shows the front and back 
views of the polygon models of Fig. 1, whose principal axes displayed 
with red lines are obtained using Equations (6) and (8). The principal 
axis calculated using Equation (6) does not lie at the center of the 
polygons. 

 

(a) Principal axis (red line) obtained by Equation (6) 
 (front view) 

 
(b) Principal axis (red line) obtained by Equation (6)  

(back view) 

 
(c) Principal axis (red line) obtained by Equation (8)  

(front view) 

 
 (d) Principal axis (red line) obtained by Equation (8)  

(back view) 
 

Fig. 2 Difference of the principal axes depending on constraints 
 

3.4 Division of point cloud for quadric surface 

fitting 
In order to divide the point cloud into several groups, the point cloud 

is fitted to a quadric surface within the specified tolerance by using the 
principal axis calculated in section 3.3. First, the interval of division is 
determined along the principal axis. Next, using the coordinate of the 
point cloud defined from the interval, a quadric surface is fitted by 
using the method described in section 3.2. The distance between the 
quadric surface and the point cloud is evaluated and a quadric surface 
is defined for each point cloud within the tolerance. In quadric surface 
fitting described in this section, Equation (6) is used as the constraint. 
This is because the solution might not be obtained when the Equation 
(8) is used. Even if the solution is obtained, the number of groups in 
the point cloud will be large and a large number of quadric surfaces 
must be defined for earthenware. Therefore, as for the reasonable 
number of division, Equation (6) is used as the constraint. The 
overview of the process is described below: 

1. Decide the length of the principal axis 
Since the principal axis calculated in section 3.3 is infinite, the 
principal axis is defined only for the interval where a point 
cloud exists. All point clouds are projected onto the principal 
axis and two points that form the maximum distance on the 
principal axis are obtained. The obtained points are set as the 
start and end points of the axis. Fig. 3 shows the point cloud 
and the red line shows the principal axis. For easier view, the 
density of the point cloud was decreased to 20% of the actual 
one. 

 
Fig. 3 Point cloud and principal axis 

 
2. Divide the point cloud according to the planes 

Since there are ten coefficients for Equation (1), at least ten 
points are required for quadric surface fitting. Planes whose 
normals are the principal axes in step 1 are considered. On the 
principal axis, it is possible to retrieve point clouds included in 
a region sandwiched by the two planes. In addition, the point 
cloud is divided so that each of the divided groups contains ten 
or more points. For example, if the principal axis is divided 
into 100 intervals, 100 groups of point clouds are generated. 
Thus, each group will contain about 50 points in case of the 
point cloud shown in Fig.1. Accordingly 1/100 of the length of 
the principal axis is set as the unit of movement. The created 
quadric surface is evaluated with original point cloud by using 
maximum and average distance. The length obtained by 
dividing the principal axis into 100 intervals is set to dz and the 
start point of the principal axis is set to s and the end point is 
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set to e. Plane 1 is defined as a plane that passes through one of 
the points s or e and contains the normal vector on the 
principal axis. Plane 2 is defined as a plane translated from 
plane 1 by distance dz. Point clouds delimited by plane1 and 
plane 2 are obtained. Fig. 4 shows the point clouds between 
two planes, where dz is multiplied several times from the 
actual utilization values. In Fig.4, the red line is the principal 
axis shown in Fig.3. 

 
Fig. 4 Point cloud delimited by two planes 

 
3. Quadric surface fitting and evaluation 

A quadric surface is fitted to the point cloud sampled in step 2. 
If quadric surfaces are created from point clouds in a wide 
range as much as possible, the number of quadric surfaces to 
be created can be reduced. Accordingly, with the specified 
tolerance (average distance and maximum distance), the 
distance between the point clouds and quadric surfaces is 
evaluated. The average distance between the point cloud and 
the quadric surface is derived from the average obtained by 
projecting each point in a region between the two planes. The 
maximum distance is calculated in the same manner as the 
average distance. If the distance is equal to or smaller than the 
tolerance, translate plane 2 by dz along the axis to increase the 
intervals delimited by planes 1 and 2. Then, repeat the fitting. 
If the distance is greater than the tolerance, quadric surfaces 
will be defined for the point clouds in the previous interval. To 
be more specific, by plane 2 moved by –dz along the axis, 
points are defined in the interval delimited by planes 1 and 2. 
A quadric surface is fitted to these points, and the quadric 
surface information is saved. Then, plane 1 is moved to the 
position of plane 2 and the process of steps 2 and 3 is repeated. 
As planes 1 and 2 coincide, the processing is terminated. In 
Fig. 5, the red points are fixed as quadric surface and planes 1 
and 2 are redefined and the red line is the principal axis in 
Fig.3. 

 
Fig. 5 Point clouds set as a quadric surface and definition of new 

planes 

 
Fig. 6 visualizes quadric surfaces generated from the axes of 

principal and point cloud groups. These are parts of quadric surfaces, 
generated only for the portions where point clouds exist. The initial 
tolerance is 0.5mm for the average distance and 1.0mm for the 
maximum distance. If surface fitting fails, the tolerance will be set to a 
greater value, from 50 to 100% of the initial one for the next fitting. 
For generating the surfaces in Fig. 6, the following tolerance is set: 
1mm or smaller for the average distance and 4mm or smaller for the 
maximum distance. Along the virtual principal axis, quadric surfaces 
are fitted to the point clouds in order. The fixed point clouds are 
excluded for the subsequent application. In other words, whenever a 
group of the point cloud is fixed as a quadric surface, the number of the 
points available will continue to decline. In our method, the ellipsoid 
shown in Fig. 6 (d) is fitted after the quadric surfaces of (a), (b) and (c) 
are fixed. Due to this, point clouds cannot be chosen so flexibly and 
quadric surfaces cannot be fitted with using the same tolerance. 
Therefore, quadric surfaces are fitted by using the default initial 
tolerance. For the intervals for which the surfaces cannot be fitted, the 
tolerance is loosened to 1.5mm for the average distance and 6mm for 
the maximum distance. Fig. 6 (e) shows the all the surfaces of (a), (b), 
(c) and (d) drawn at the same time. 

         
(a) Ellipsoid               (b) One-sheet hyperboloid 

        

(c) One-sheet hyperboloid        (d) Ellipsoid 

 
(e) All groups 

 
Fig.6 Quadric surfaces for point cloud groups 

 

3.5 Free-form surface generation from quadric 
surfaces  

Earthenware surfaces can be represented with two or more quadric 
surfaces by using the method described in section 3.4. If earthenware 
surfaces can be represented with quadric surfaces, the method can be 
used for a wide range of applications. Examples are as follows: 

1. There are so many missing parts in earthenware that they 
cannot be interpolated from the peripheral information. 

Plane 1 

Plane 2 

Plane 1 
Plane 2 
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2. The surface is set as the reference for optimizing the location 
of earthenware pieces. 

 
In this paper, we propose a method to reproduce free-form surfaces 
from quadric surfaces. For the reproduction processing, missing 
portions between separate quadric surfaces must be interpolated. In 
our method, the tolerance is set to guarantee the distance equal to or 
smaller than 1mm on an average (1.5 mm for some portions). Thus, 
sample points are generated on quadric surfaces for interpolating 
missing portions and a free-form curve mesh is generated from the 
sample points. A region enclosed by the generated four free-form 
curves is interpolated by a surface with good accuracy for 
earthenware. In addition, by using the four free-form curves, it is not 
necessary to generate trimmed surfaces, which will make operation 
easier for the created free-form surfaces. The overview of the 
processing is described below: 

 
1. Generate sample points on each quadric surface 

Each quadric surface has its principal axis. The axis is divided 
equally to the specified number of intervals and a plane whose 
normal is the principal axis is defined to pass through one of 
the division points. Sample points are generated on the 
intersection curve between the quadric surface and the defined 
plane. According to the classification described in section 2.5, 
each point is represented parametrically. By setting the number 
of division for the principal axis and that for intersection 
(ellipse), the coordinates of the sample points can be easily 
calculated. Fig. 7 shows the sample points generated on 
quadric surfaces.  
 

 
Fig. 7 Sample points on quadric surfaces 

 
2. Generate a curve mesh 

The sample points are interpolated in each of u and v 
directions. The u direction here indicates the direction of 
principal of each quadric surface and the v direction indicates 
the direction of the principal axis. By generating a Bezier 
curve that passes through a point [17], one Bezier curve is 
always generated between vertices. In this paper, a free-form 
curve passing through the point is generated, while at each 
point, the normal vector and the tangent vectors in the u and v 
directions can be obtained. It is also possible to generate a 
free-form curve with high accuracy using the points, normals 

and tangent vectors, which are introduced in the document 
[17]. Fig. 8 is an example where sample points are interpolated 
with Bezier curves. 

 
Fig. 8 Generated curve mesh 

 
3. Interpolate a curve mesh 

Since Bezier curves always pass through sample points, every 
end point of Bezier curves coincides with any of the end points 
of Bezier curves. Due to this, it is easy to generate a surface to 
a region enclosed with four sides. In this paper, a Gregory 
surface [18] is generated since it is easy to generate the surface 
from four Bezier curves. Fig. 9 shows Gregory surfaces 
generated to regions enclosed with four Bezier curves. 

 
Fig. 9 Result of surface interpolation 

 

4. Experimental Result 
This section describes the results of applying our method to 

earthenware pieces. The earthenware pieces used in the experiment are 
borrowed from Iseki No Manabi-kan at Morioka City. We used a PC 
with the CPU of Intel Core2 Duo 2.80GHz and 3.48GB memory in 
the experiments.  

Fig. 10 shows a polygon model obtained by smoothing polygons, 
whose location and posture are determined three-dimensionally from 
measured point clouds by using the method described in section 3.1. 
The number of polygons is 11,726. The experiment is carried out for 
the model shown in Fig. 10. The bounding box size of the model in Fig. 
10 is 205.6mm (width) x 288.1mm (height) x 208.1mm (depth). 

 

 
Fig. 10 Smoothed polygon data 
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First, quadric surfaces generated using the method described in section 
3.4 are evaluated whether they are reasonable. Fig. 11 shows the 
polygons smoothed using the method described in section 3.1 
overlapped on quadric surfaces. The portions currently shown in 
yellow, cyan, blue, and red are fitted to quadric surfaces. A green part 
shows a polygon model obtained by smoothing polygons, whose 
location and posture are determined three-dimensionally from the 
measured point clouds. In the subsequent figures, the same rule of the 
colors is applied. Table 3 shows the average distances and the 
maximum distances between the quadric surfaces in Fig. 6 and the 
vertices on the smoothed polygons. The quadric surfaces are generated 
with the tolerance equal to or smaller than 1mm for the average 
distance (1.5mm for some portions), while the distances for some 
portions are the ones shown in Table 3. As the measured maximum 
distances are compared to 205.6mm, the minimum side of the 
boundary box of the model, the gap is about 1.9% (2.6% for some 
portions). This quality is judged to be sufficient for restoration of 
earthenware. But the proposed method removes uneven portions on 
surfaces by applying the smoothing technique. If the whole shape is 
distorted by the removal, it is difficult to apply this method. 
 

 
Fig. 11 Comparison of quadric surfaces and polygons 

 
Table 3. Maximum distances between sample points and quadric 

surfaces 
Quadric surface Average distance Maximum distance 

(a) Ellipsoid 0.57mm 3.82mm 
(b) One-sheet 
hyperboloid 

0.62mm 3.93mm 

(c) One-sheet 
hyperboloid 

0.51mm 3.33mm 

(d) Ellipsoid 1.06mm 5.40mm 
 
Then, the generated free-form surfaces are evaluated whether they 

represent the whole shape properly. Fig. 12 shows the smoothed 
polygons overlapped on the generated free-form surfaces. The portions 
shown in orange are free-form surfaces generated by using the method 
described in section 3.5. It is possible to find that they are almost 
coincident. The average separation distance is 1.31mm and the 
maximum separation distance is 6.01mm. 

  

 
Fig. 12 Earthenware pieces and polygon data smoothed with the 

Taubin’s method 
 

Fig. 13 shows the data from which some polygons of the model in 
Fig. 10 are removed randomly. The bounding box size of the model in 
Fig. 13 is 205.6mm (width) x 288.1mm (height) x 208.1mm (depth). 
The number of polygons is 6,546. 

 

Fig. 13 Polygon model some of whose point clouds are removed 
 

First, quadric surfaces fitted to the data of Fig. 13 and the data of Fig. 6 
are compared. Fig.14 shows two kind of quadric surfaces. One is from 
complete polygons shown in Fig.6 and the other is from incomplete 
polygons shown in Fig.13. The quadric surfaces generated from the 
polygons in Fig. 13 are shown in magenta. Both surfaces are almost 
coincident. This means that the number of point clouds does not affect 
quadric surface fitting. In addition, since the length along the principal 
axis is not changed greatly, the number of point clouds does not affect 
grouping of point clouds. 

      
(a) Ellipsoid       (b) One-sheet hyperboloid 

        
(c) One-sheet hyperboloid             (d) Ellipsoid 

Fig. 14 Overlap of quadric surfaces 
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In the end, Fig. 15 shows the free-form surface data generated from 

the polygon data in Fig. 13 overlapped on those generated from the 
polygon data in Fig. 10. The free-form surfaces shown in magenta are 
generated from the data of Fig. 13 and those in orange are the ones 
shown in Fig. 12. It is possible to find that the surfaces are almost 
coincident.  

 

Fig. 15 Overlap of free-form surfaces 
 

To confirm the efficacy against other earthenware, our method is 
applied to other earthenware. In Fig. 16 (a), the polygon model is 
created directly from the point cloud of earthenware without missing 
portions. The number of polygons is 194,639. The bounding box size 
of the model is 124.4mm (width) x 183.3mm (height) x 142.4mm 
(depth). The smoothed polygon model is generated by applying the 
Taubin's method as shown in Fig.16 (b). For the polygon model in Fig. 
1, most of the uneven portions could be removed by applying the 
smoothing method for 1,000 times, but the polygon model in Fig. 16 is 
smoothed by applying the smoothing method for 10,000 times because 
the height difference at uneven portions is large. Then, the initial value 
of the number of application times is set to 1,000 and the test is 
repeated for 2,000 times, 3,000 times and more in increments of 1,000. 
As a result, the number of application times is set to 10,000, in which 
most of the patterns on surfaces are removed. 
 

 
(a) Polygon created from point data 

 

(b) Polygon smoothed by applying the Taubin’s method for 10,000 
times 

Fig. 16 Excavated earthenware 1 

 
Fig. 17 shows the results of the quadric surface estimation by the 
proposed method. The point clouds were divided into four segments. 
For generating the surfaces in Fig. 17, the following tolerance is set: 
1.5mm or smaller for the average distance and 8.0mm or smaller for 
the maximum distance. The tolerance is set by the same method as the 
one described in section 3.4. Fig.18 shows the polygons of Fig. 16 (b) 
overlapped on quadric surfaces. The green portions show the polygon 
models obtained by smoothing polygons, whose location and posture 
are determined three-dimensionally from the measured point clouds. 
Table 4 shows the average distances and the maximum distances 
between the quadric surfaces in Fig. 17 and the vertices on the 
smoothed polygons. The ellipsoid shown in Fig. 17 (b) has the longest 
distance. As the measured maximum distances are compared to 
124.4mm, the minimum side of the bounding box of the model, the 
gap is about 6.2%. This quality is judged to be sufficient for restoration 
of earthenware.  
 

         
(a) Ellipsoid                  (b) Ellipsoid 

        
(c) One-sheet hyperboloid   (d) One-sheet hyperboloid 
 

 
(e) All groups 

Fig.17 Quadric surfaces for point cloud groups 
 

 

Fig.18 Comparison of quadric surfaces and polygons 
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Table 4. Maximum distances between sample points and quadric 
surfaces 

Quadric surface Average distance Maximum distance 
(a) Ellipsoid 1.27mm 5.39mm 
(b) Ellipsoid 1.12mm 7.69mm 
(c) One-sheet  
hyperboloid 

0.82mm 3.58mm 

(d) One-sheet  
hyperboloid 

0.84mm 4.38mm 

 
Next, to confirm the efficacy against earthenware with missing 

portions, our method is applied to assembled earthenware excavated 
from ruins. Fig. 19 (a) shows assembled earthenware excavated from 
ruins, where more than half of earthenware is missing. The number of 
polygons is 117,257. The bounding box size of the model is 154.1mm 
(width) x 213.2mm (height) x 141.3mm (depth). Fig. 19 (b) shows 
polygon models obtained by smoothing polygons using the Taubin's 
method.  

 

 

 
(a) Polygon created from point data 

 

 
(b) Polygon smoothed by applying the Taubin’s method for 1,000 

times 
 

Fig. 19 Excavated earthenware 2 
 

Fig. 20 shows a quadric surface generated from the principal axis and 
point clouds. For generating the surface in Fig. 20, the following 
tolerance is set: 1.0mm or smaller for the average distance and 6.5mm 
or smaller for the maximum distance. The tolerance is set by the same 
method as the one described in section 3.4. Fig.21 shows the polygons 
of Fig. 19 (b) overlapped on the quadric surface. The green portions 

show polygon models obtained by smoothing polygons, whose 
location and posture are determined three-dimensionally from the 
measured point clouds. Table 5 shows the average distances and the 
maximum distances between the quadric surfaces in Fig. 19 and the 
vertices on the smoothed polygons. As the measured maximum 
distances are compared to 141.3mm, the minimum side of the 
bounding box of the model, the gap is about 4.4%. This quality is 
judged to be sufficient for restoration of earthenware. It shows the 
effectiveness for damaged earthenware. 

 
(One-sheet hyperboloid) 

Fig.20 Quadric surface for point cloud groups 
 

 
Fig.21 Comparison of quadric surfaces and polygons 

 
Table 5. Maximum distance between sample points and quadric 

surfaces 
Quadric surface Average distance Maximum distance 

 Ellipsoid 0.74mm 6.17mm 
 

5. Conclusion and Future Issue 
In this paper, we proposed the method of fitting quadric surfaces 

created by the point clouds to earthenware. In our method, the Taubin’s 
smoothing method is applied to measured point clouds and the 
portions with uneven patterns are removed. After that, quadric surfaces 
are fitted to all point clouds and the principal axis is determined for 
dividing the point clouds into groups. By repeating the division of 
point clouds along the principal axis and fitting quadric surfaces to the 
point clouds, the point clouds are divided most appropriately for 
quadric surface fitting. Earthenware surfaces can be expressed with the 
generated quadric surfaces. In addition, by using points on quadric 
surfaces, the method to represent the entire surface of earthenware with 
free-form surfaces is described. In the future, the method is extended 
for thickening shapes or optimizing the posture of earthenware pieces. 

Part of this work was supported by JSPS KAKENHI Grant Number 
2050088. 
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The basic concept of our method has already been presented in 
NICOGRAPH International 2013[19] and this paper is the extended 
one. We are extremely grateful for efficient advice from the paper 
reviewers. 

 

Appendix 
As the point is set as X , consider the problem of fitting a quadric 

surface to a set of points. Equation (a-1) is a quadric form representing 
a quadric surface. 

 

0
),(

222 =+++++++++

==

dwzvyuxrzxqyzpxyczbyax
AXAXF    

[ ]TdwvurqpcbaA =  

[ ]TzyxzxyzxyzyxX 1222=   

For an arbitrary point ),,( iii zyx , 
iX  is defined as follows: 

[ ]Tiiiiiiiiiiiii zyxxzzyyxzyxX 1222=  

If point ),,( iii zyx  lies on the quadric surface, 0),( =AXF i
 is 

obtained, otherwise, 0),( 2 >AXF i
is obtained. 

In other words, by determining A  that minimizes Equation (a-2) 
below, Equation (a-1) for the quadric surface can be defined. 
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This is redefined as a problem of matrix.  
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If the matrix D  defined with a row of 
iX  at all vertices is defined 

as shown above, this will be the problem to minimize  

DADADA TT=2                             (a-3) 

 
In addition, when Equation (a-3) is minimized, this problem can be 

replaced with the one solving the Lagrange multiplier method by 
adding the constraint to A . Fitzgibbon et al. sets Equation (a-4) as the 
condition for defining Equation (a-1) to be an ellipse. 
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In addition, the constraint condition is set by Equation (a-5).  
 

142 −=− abp                 (a-5) 

 
In this paper, it is necessary to handle general quadric surfaces 

including ellipsoids and different constraints must be set.  
Douros describes the constraints that they use. The constraint is set 

as the partial differential vector at the origin is set to the unit vector. If a 
differential vector is defined as 
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If Equation (a-6) is rewritten using a matrix, the following is obtained.  
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To summarize the above, the quadric surface fitting problem becomes 
the problem of the general Lagrange multiplier method shown below, 
where Equation (a-3) is minimized under the constraints of Equation 
(a-7). 
 

(a-6) 

(a-7) 

(a-1) 

 

is obtained, which means 
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[Problem of the Lagrange multiplier method] 
A is obtained to minimize the following: 

)1(),( −−= CAADADAAL TTT λλ 0>λ  
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