
Vol. 12, No. 1, pp. 36 – 47

Feature Extraction and Modification for Illustrating 3D
Stone Tools from Unorganized Point Clouds

Enkhbayar Altantsetseg1) Yuta Muraki2) Katsutsugu Matsuyama2)

Fumito Chiba3) Kouichi Konno2)

1) Graduate School of Engineering, Iwate University, Japan
2) Faculty of Engineering, Iwate University, Japan

3) Laboratory for Archaeology and Geoinformatics, LANG Co., Ltd, Japan

1),2){bayar@lk., murakiyuta@lk., kmatsu@, konno@}cis.iwate-u.ac.jp
3)f-chiba@lang-co.jp

Abstract
This paper presents a method for extracting and modifying features for illustrating stone tools. Features
are detected from unorganized point clouds obtained by a 3D laser scanner. The curvature of each point
in the point clouds is estimated by local surface fitting algorithm and used for detecting potential feature
points. Feature lines are extracted by directionally growing algorithm. Our directionally feature line grow-
ing method is simple to detect feature lines from unorganized point data. The main idea of our method is
to extract feature lines using principal curvatures and principal directions of the potential feature points
along the axis directions and to merge all extracted lines. In the illustration of stone tools, to maintain
form and manufacturing information, it requires to modify the detected features by specific knowledge
on illustrating stone tools. Using the power of data parallel computation on the GPU, our method can
be accelerated multiple times. Finally, our experimental results are compared to the actual illustrations
drawn by archaeological illustrators.

Keywords: feature extraction, feature modification, point clouds, stone tools, GPGPU.

– 36–

Vol. 12, No. 1, pp. 36 – 47

1 Introduction

In recent years, 3D digitizing technology is
widely used for conserving and studying cul-
tural heritages. Laser scanning technology al-
lows us to visualize and illustrate highly ac-
curate archeological artifacts [15, 19, 25]. In
this paper, we will introduce a new method
to extract and modify features of stone tools
for illustrating them from unorganized point
clouds obtained by a 3D laser scanner. The
study of stone tools is one of the important
subjects in cultural heritage because stone tools
are the common evidences of the prehistoric hu-
man culture. On the other hand, illustration of
stone tools is important in archaeological re-
ports, publications and study of stone tools.

Stone tools used by early humans were not
of a formal form and have sharp edges as well
as rough surfaces such as dents and cracks on
the surfaces. The illustration of stone tools re-
quires to convey the information on manufac-
ture, modification and usage of tools and takes
a long time because of the complexity of tools
[18].

Illustrators use view dependent and view in-
dependent lines for illustrating archeological ar-
tifacts. View dependent lines are lines depen-
dent on viewing directions such as silhouette
lines, suggestive outlines and apparent ridges.
View independent lines are lines that are not
changed with respect to viewing direction such
as ridge and valley lines and hatching lines. In
our work, we considered only ridge and valley
lines that are valuable and important candidate
for the illustration.

For extracting ridge and valley lines, the prin-
cipal curvatures and principal directions of each
point are computed by local surface fitting al-
gorithm [4, 9]. Potential feature points are de-
tected by the curvature of points.

In point cloud slicing technique, feature lines
are extracted from detected potential feature
points. The main idea of our method is to grow
feature lines along the axis directions by us-
ing the principal curvatures and principal di-
rections of feature points.

There are several techniques to extract fea-
ture lines from detected feature points. [7,
11, 23] compute minimum spanning tree to ex-
tract feature lines. This technique is capable
of extracting feature lines by connecting exist-
ing feature points. Therefore, high quality of
point cloud is required to get robust and accu-

rate result. [5, 22] use projection based method
for extracting features from detected potential
feature points. [5] projects potential feature
points to the intersections of locally fitted sur-
faces. After smoothing projected points, poly-
lines are grown through the projected points.
[22] smoothes feature points by projecting them
onto their principal axis of neighborhoods.

In contrast to previous methods our method
does not requires any smoothing operation and
extracts feature lines directly from potential
feature points. Our method is suitable for par-
allel computation.

The extracted feature lines are insufficient to
convey form and manufacturing information of
stone tools because of their surface complexity.
Thus, in order to illustrate stone tools, we need
extra modifications on the feature lines.

In practice, since it requires to illustrate
thousands of stone tools, it is very time con-
suming. Illustrating stone tools directly from
point clouds rather than surface reconstruction
can reduce time consumption drastically.

Our main contributions are as follows:

• We propose a simple algorithm for extract-
ing feature lines from detected potential
feature points. The main idea of our algo-
rithm is to extract feature lines along the
axis directions by using the principal cur-
vatures and principal directions of points;

• We modify the detected feature lines ac-
cording to the specific knowledge on illus-
trating stone tools to represent form and
manufacturing information [2];

• We accelerate time consuming steps of our
algorithm using data parallel computation
concept on the GPGPU.

The rest of our paper is organized as follows.
Section 2 introduces the related works. In sec-
tion 3, we describe our method including po-
tential feature point detection, feature line ex-
traction and modification algorithms. Section
4 introduces acceleration of our algorithm on
the GPU. Section 5 shows experimental results
including comparison results of the archaeolog-
ical illustrator. Finally, we conclude this paper
in section 6.

2 Related work

Our problem is closely related to feature detec-
tion and extraction problems, which have im-

– 37–

Vol. 12, No. 1, pp. 36 – 47

Figure 1: Feature extraction and modification pipeline.

portant application in visualization, geometric
modeling and image analysis. There are two
kinds of methods: one is point based methods
and the other is triangle mesh based methods.

2.1 Point-based feature extrac-
tion methods

Our algorithm belongs to point-based methods.
Feature extraction from point data is not a sim-
ple task because there is no information on con-
nectivity and normal vectors. Most algorithms
consider only line-type features. For example,
[11] uses Riemann graph to build connectiv-
ity information in point data and uses prin-
cipal component analysis to determine feature
points. [23] extends this approach with multi-
scaling analysis of the neighborhoods. Both
methods use the minimum spanning tree to ex-
tract feature lines.

[7] uses segmentation to identify the regions
of sharp features and to process them as a graph
to detect the feature lines. [28] detects sharp
features from point data by computing Gauss
map clustering on local neighbors.

[5, 6] detect feature points by locally fit-
ting robust moving least squares polynomial.
They project detected potential feature points
to the intersections of multiple surfaces then
grow poly-lines through the projected points.
[22] is similar to above method, but the feature
points are smoothed by projecting them onto
their principal axis of neighborhoods.

In [13], features are detected by local sur-
face curvatures. Local description of a surface
is generated by fitting the surface to neighbor
points and estimating the curvature at multi-
ple scales. [3] fits the local representation of
the manifold using a truncated Taylor expan-
sion. By using the Taylor’s expansion, all lo-

cal geometric quantities such as curvatures are
encoded. In their work, it shows that the esti-
mated curvatures converge to the true ones in
the case of smooth surface.

[29] introduces the method for salient edge
extraction which does not depend on curvature
derivatives. This method based on a topolog-
ical analysis of the principal curvatures. [17]
slices 3D point clouds into 2D cross sections
and finds feature points for each of the cross
sections. The properties of the convex hull and
Voronoi diagram of the point cloud are used for
extraction of feature points and reconstruction
of feature lines.

2.2 Mesh-based feature extrac-
tion methods

Many different techniques have been developed
to detect feature lines on 3D meshes. [14] intro-
duced a multi-resolution framework and normal
based classification operator for feature extrac-
tion on triangle meshes. [12] uses anisotropic
filtering on higher order surface derivatives to
extract smooth feature lines on surface mesh
whereas [27] computes the mean and Gaussian
curvature by using focal surface.

[30] detects crest lines on triangle meshes.
This method based on estimating the curva-
ture tensor and curvature derivatives via local
polynomial fitting. [21] detects ridge and val-
ley lines by combining multi-level implicit sur-
face fitting and finite difference approximations
whereas [16] used local MLS fitting technique.

– 38–

Vol. 12, No. 1, pp. 36 – 47

Figure 2: A process of feature line extraction. (a) Original image of the stone knife. (b) Detected
potential feature points. Blue dots represent ridge points; red ones represent valley points. (c)
Result of ridge line extraction along the +Y axis direction. (d) Result of ridge line extraction
along the −Y axis direction. (e) Result of merging two line sets. (f) Extracted and merged ridge
lines along ±X and ±Y axis directions, (g) Ridge (blue) and valley (red) lines

3 Feature extraction and
modification

Suppose that potential feature points are the
points whose maximum absolute value of the
principal curvatures is greater than the user-
defined threshold value σ. Additionally, the po-
tential feature points can be divided into ridge
or valley points depending on the sign of curva-
tures. A line reconstructed from ridge (valley)
points is called a ridge line (valley line).

Figure 1 shows the overview of our feature
extraction and modification algorithm. In the
first stage of the procedure, potential feature
points are detected. In the second stage, feature
lines are extracted along the axis aligned direc-
tions. In the next stage, extracted feature lines
are merged. After that, feature lines are mod-
ified to illustrate stone tools. Finally, smooth
curves are generated from the feature lines.

3.1 Potential feature point detec-
tion

Input of our algorithm is unorganized 3D point
clouds P = {pi ⊂ R3} obtained from a laser
scanner.

Smoothing First, point clouds are smoothed
by using Gaussian smoothing method [26] to ro-
bustly detect features of the surface of a stone
tool because the surface is rough and the cur-
vature values of points are sensitive to noise.

For smoothing point clouds, M nearest neigh-
bors for each point are detected by using KD-
tree (degree = 3) and the normal vector of each
point is estimated by using Principal Compo-
nent Analysis (PCA) [10]. Then, project all the
neighbors onto tangent plane of each point and
select neighbors by angle criterion [20]. In the
Gaussian smoothing algorithm, the position of
each point is replaced with a convex combina-
tion of itself and its selected neighbors.

Surface fitting After the number of iter-
ations of the smoothing, for each point pi, its
normal vector is estimated by [10] and then its
selected neighbors are transformed to local co-
ordinate system (u, v, w). In this local coordi-
nate system, point pi becomes (0, 0, 0), its nor-
mal vector lies along the positive w-axis and
point pi and its selected neighbors are fitted
by the following cubic polynomial in canonical
form [4].

w = F (u, v) =
1

2
(k1u

2 + k2v
2)+ (1)

+
1

6
(b0u

3 + b1u
2v + b2uv

2 + b3v
3),

where k1 and k2 are principal curvatures. If pi
is not umbilical point (k1 6= k2), the two vectors
t1 = (b0, b1), t2 = (b2, b3) become the principal
directions of k1 and k2 along their curvature
lines, respectively. The selected neighbors of
point pi are obtained by a method described in
the section Smoothing.

– 39–

Vol. 12, No. 1, pp. 36 – 47

The coefficients k1, k2 and bi(i = 0, . . . , 3) of
Equation (1) are calculated by [9]. The normal
vector of the surface given by Equation (1) is
calculated as follows:

N(u, v) = (Fu(u, v), Fv(u, v),−1). (2)

By using Equations (1) and (2), we can ob-
tain 3× n linear equations with six unknowns,
where n is the number of selected neighbors.
These linear equations can be easily solved by
standard least square fitting method. Finally,
principal curvature values k1 and k2, and their
principal directions are obtained.

In the next step, set of potential ridge points
Pr ⊂ P and set of potential valley points Pv ⊂
P are created using the following formulations:

Pr = {pi|pi ∈ P and σ < max(k1, k2)}
Pv = {pi|pi ∈ P and

−σ > min(k1, k2)},
(3)

where σ is the user-defined threshold value.
Figure 2(b) shows detected potential feature
points. Blue dots indicate ridge points and red
ones indicate valley points.

3.2 Feature line extraction

Shape of stone tools is complex and its surface
contains many sharp and smooth features. In
order to robustly and accurately extract fea-
tures, the ridge and valley lines are extracted
along all axis directions (±X,±Y,±Z) respec-
tively using the principal curvatures and princi-
pal directions of potential feature points. Then,
all feature lines derived by all directions are
merged.

To extract feature lines along the axis di-
rections, the point cloud is respectively sliced
along the X,Y and Z axis directions and sets
of slices Dx, Dy, and Dz are created. For ex-
ample, set

Dy = (D1,y, D2,y, . . . , Dn,y) (4)

is created by slicing point cloud along the Y
axis direction. Di,y is the ith slice of the set
Dy. The number of slices of the set depends on
user defined slice thickness d.

Consequently, feature lines are grown along
the axis directions from slice to slice. To grow
feature line, potential feature points of each
slice are clustered by distance based clustering

and the radius rpi is computed for each point
pi by Equation (5):

rpi
= si + d, (5)

where si is the distance between point pi and its
farthest selected neighbor, d is the slice thick-
ness of the point cloud.

Endpoint p̄ of feature line is detected by find-
ing maximum (minimum) curvature point of
the cluster. To grow feature line from the end-
point p̄ to the next slice, sphere with radius rp̄
centered at the endpoint is used according to
Equation (5).

The Algorithm 1 shows our technique on
ridge line extraction as an examples of extrac-
tion along the +Y axis direction.

Algorithm 1. Algorithm for extracting ridge

lines along the +Y axis direction.

for each slice Di,y ∈ Dy

find potential ridge points using Eq. 3

create clusters from potential ridge points

for each cluster Cj

if any endpoint p̄ not found in Cj then

p̄← a point with the highest curvature

end if

//find a candidate point from next slice

//to grow ridge line

while p ∈ Di+1,y and ||p− p̄|| ≤ rp̄
register point curvatures

end while

p′ ← a point with the highest curvature

if p′ is found

β ← compute angle between principal
direction of p′ and the axis Y

if β < threshold angle then

add [p̄p′] to ridge line set

p̄← p′

end if

end if

end for

end for

Figure 3 shows different cases for line growing
process. In the case of Figure 3(a), the sphere
centered at point p̄ contains three potential fea-
ture points from the next slice. Point p′ has the
highest curvature value and the angle between
its principal direction vector t and growing axis
direction is less than user defined threshold an-
gle (= π/3), therefore point p′ is selected as an

– 40–

Vol. 12, No. 1, pp. 36 – 47

Figure 3: Different cases of feature line growing.

endpoint of the line, and points p̄ and p′ should
be connected. In the case of Figure 3(b), fea-
ture point p′ is the point with the highest cur-
vature for the spheres centered at points p̄1 and
p̄2. Thus both lines will intersect at point p′,
which will be the endpoint of the lines as well.
In Figure 3(c), the cluster of the potential fea-
ture points does not contain any endpoint thus
point with the highest curvature will be a new
endpoint p̄.

Figure 2(c) shows the result of the ridge ex-
traction algorithm along the +Y axis direction.
There are some missing intersection points of
ridge lines depending on the growing directions
because our line growing technique can find
only intersection point of feature lines which
are growing along given the axis direction as
well as cannot split feature lines.

In order to find the missing intersection
points and to improve the quality of the lines,
the same steps are required to implement along
the −Y axis direction as shown in Fig. 2(d).
Figure 2(e) shows the result of ridge line can
be improved by merging two line sets along
+Y and −Y axis directions. For example, Fig-
ure 2(c) and (d) show our line extraction al-
gorithm, with which intersection points A and
B are detected along directions +Y and −Y ,
respectively. After merging two line sets, both
intersection points A and B can be illustrated
on the ridge lines. Corresponding to the Y axis,
the ridge line set LRy is created, by merging
ridges lines extracted along +Y and −Y axis
directions.

By repeating this process for all directions,
all ridge lines can be detected as shown in Fig-
ure 2(f). For the valley lines, overall process is
the same as ridge line detection as shown in red
lines in Figure 2(g).

After line extraction along all axis directions,
ridge line sets LRx, LRy, LRz as well as valley
line sets LVx, LVy, LVz are obtained. Therefore
the final result is defined by merging these line

sets. At the final, unnecessary shorter lines and
branches are removed. The length limit of short
lines and branches will be given by the user.

3.3 Feature line modification

Stone tools illustration follow a set of conven-
tions that convey the information on manufac-
ture and modification of tools. An outline of the
tool is drawn first and next, the outlines of the
flake scars are drawn. Flake scars are principal
features of stone tools and moderately concave
areas where material has been removed. Each
flake scar has its own outline. Both the outline
of the tool and the outline of the flake scars are
drawn with thick line. Once the outlines of the
flake scars are drawn in, ripples from the force
of the blow are added in lighter lines [18].

Thus detected feature lines are insufficient to
convey information of form and manufacturing
of tools. Our detected lines should be modified
by using the following simple rules:

1. In order to distinguish flake scars from each
other, all edges should be connected to
other curves.

2. Sharp edge lines and outlines of flake scars
are drawn with thick lines.

3. The flake scare carved last is illustrated by
smooth curves at the intersection of ridge
lines.

Figure 4: Algorithm of feature line continuity.

Connect lines to other curves There are
a lot of open lines and line segments in the ex-
tracted lines. In order to make closed area, all
open line segments should be detected. After
that, each open line segment is fitted by cubic
Bezier curve and extended along the tangent
vector of the Bezier curve. To extend the open
line segments, the tangent line of the Bezier
curve at the open end point is created. Then
the point on the tangent line will be selected in

– 41–

Vol. 12, No. 1, pp. 36 – 47

a given distance from open end points. For the
selected point on the tangent line, its nearest
point is detected on the surface of the object.
This point will be considered as a new point
for extending line segment and it is connected
to the open end point of a line segment. This
process will be repeated along tangent line un-
til reach to any other feature line. If a sphere
centered at the new point contains some points
of the feature line, the extended line segment
reaches the feature line. Radius of the sphere
is given by formula (5).

Figure 4(a) shows the process of line clos-
ing. Open line segment AB is shown with
red, Bezier curve and its tangent line are rep-
resented with black. Green dots represent se-
lected points on the tangent line. The red ones
are the new points found on the surface. Point
C will be an end point of the line segment since
the sphere centered at new point D contains
point C. Figure 4(b) shows the result of the
closed line segment AC.

Sharp edge To distinguish sharp edges and
outlines of flake scars from smooth ridge lines
and valley lines, there are illustrated with thick
lines. Average curvature value of the each ridge
line segment is evaluated by following equation:

K(l) =

N∑
i=1

C(ai)

N
,

where l is the ridge line segment with N points,
K(l) is the average curvature of the line seg-
ment l, ai is the vertex of line segment l, C(ai)
is the corresponding curvature of vertex ai.

By using a certain threshold value, a sharp
edge can be easily determined and is illustrated
with a thick line.

Figure 5: Continuity of lines at intersection
point A.

Line continuity at the intersection The
continuity of lines at an intersection point pre-
serves important information on stone tool

manufacturing such as reduction procedure.
When stone tools are illustrated, the flake scare
removed last is represented with smooth curves
at intersection points. Figure 5(a) shows in-
tersection point A with three ridge lines as an
example. The three ridge lines separate areas
S1, S2 and S3. If area S1 is removed last, S1

will be illustrated with smooth curves (see Fig-
ure 5(b)). It is a very important feature in stone
tool illustration, but it is very hard to detect
the area carved last since the broad experience
of illustrators is required. Unfortunately, this
problem has not been solved in our method.
Our algorithm cannot detect the order of flake
scare removing.

Figure 6 shows the results of our algorithm
before and after feature line modification.

Figure 6: Result of feature line modification
process. (a) before modification, (b) after mod-
ification.

3.4 Line smoothing

After extracting and modifying the feature
lines, the resultant lines look zigzag. These
lines are smoothed by a cubic B-spline curve
fitting. To fit the lines to a B-spline curve, line
segments are extracted from intersections of the
lines until no intersection is found in the lines.

Each line segment is fitted to a B-spline curve
separately. By solving the following minimiza-
tion problem, control points for each B-spline
curve are derived [24].

min(

n∑
i=1

|pi − S(uk)|2),

where pi is the vertex points of the line segment,
S(u) is the cubic B-spline curve and uk is pre-

– 42–

Vol. 12, No. 1, pp. 36 – 47

computed parameters. We solve this problem
by standard least square fitting method.

4 Acceleration of our algo-
rithm on GPGPU

We use parallel data computation on the GPU
to shorten the time consumption. We imple-
mented our approach using OpenCL on the
NVIDIA GeForce GTX 570 graphics card. Fig-
ure 7 shows the overall procedure of our feature
detection algorithm. The blue boxes represent
implementation in the GPU and the green ones
represent implementation in the CPU.

Figure 7: Overall procedure of our algorithm.

First KD-tree (degree=3) is constructed from
a point cloud in the CPU. By applying KD-tree
construction, we can investigate a certain pro-
cess in the GPU by timing the OpenCL ker-
nel to find M nearest neighboring points for
each point and then find a new position for
each point for smoothing. In the second ker-
nel, the curvature of each point is calculated
by fitting a local surface. After calculating
the curvature for each point, subsets of ridge
points Pr and valley points Pv are created in the
CPU. The slicing process of the point cloud can
be implemented independently for each slice in
the GPU. In the last kernel, feature lines are
extracted using our line growing method de-

scribed in section 3.2. Since feature line extrac-
tion for each axis direction is independent each
other, extraction process can be implemented
in parallel.

Figure 8: (a) Computation time of surface fit-
ting algorithm. (b) Computation time of overall
procedure.

By using a shared memory [1] in our imple-
mentation, a remarkable performance gain is
obtained. As shown in Figure 8(a), compu-
tation time of our surface fitting algorithm is
reduced down to 1

30 times depending on the
number of points. Figure 8(b) shows the re-
sult of comparison of the computation time
for the overall procedure under implementation
in GPU and CPU. Our algorithm was imple-
mented for a lot of different objects with up to
650,000 points. More details of the numerical
results are shown in the next section.

5 Experimental results and
application

This section presents the experimental results.
We applied our algorithm to point data of stone
tools obtained by the four-directional 3D laser
scanners, whose scanning precision is 0.2 mm
[8]. The experiment was performed in an In-
tel Core i5-650 3.2 GHz machine, with 3 GB
of RAM and an NVIDIA GeForce GTX 570
graphics card.

– 43–

Vol. 12, No. 1, pp. 36 – 47

Figure 9: (a) and (b) are results obtained from
threshold values of 0.30 and 0.15, respectively
and (c) is the result drawn by a professional
illustrator.

For the experiments, the following parame-
ters are selected: the number of the nearest
points M is 30, the number of smoothing itera-
tions is 5, the angle of criterion α is 35 degrees,
the slice thickness d of point cloud is chosen
two times of average distance between the point
and its nearest neighbor. Point clouds are sliced
to create feature lines along the X and Y axis
directions only. All the stone tools illustrated
in the experiments were thin objects, therefore
slicing the point clouds along the Z axis direc-
tion is not necessary.

Figure 9 presents the result of illustration of
a stone knife (see Figure 2(a)). Figure 9(a) and
Figure 9(b) show the results of our algorithm
with different threshold values in formula (3)
and Figure 9(c) is the result drawn by a pro-
fessional illustrator. The experimental results
show that our algorithm can detect sharp edges
well. There are some differences, however, in
the smooth ridge and valley lines, because the
lines drawn by an illustrator look more artistic
than the result of our algorithm. Some hatch-
ing lines are also shown in the illustrator’s re-
sult. Figures 10 to 12 show the results of dif-
ferent stone tools. Table 1 lists the numerical
results of implementation of our algorithm for
the experimental point data. The timings of
the implementation results show that total ex-
ecution time of our algorithm has been reduced
significantly by implementing the computation-
ally most expensive steps in the GPU.

As mentioned earlier in the introduction sec-

Figure 10: (a) is the 3D model of a tool, (b) is
the result of our algorithm and (c) is result of
professional illustrator.

Figure 11: (a) is the 3D model of a tool, (b) is
the result of our algorithm and (c) is the result
of a professional illustrator.

tion, a process of stone tool illustration is very
time-consuming. Thus, our feature detection
algorithm is very useful for stone tool illustra-
tors. The result of our algorithm cannot be
replaced with the result drawn by professional
illustrators. However, our algorithm helps to
simplify illustrator’s tasks and to make results
more efficient by detecting hardly visible fea-
ture lines. Parallel data implementation allows
us to accelerate our algorithm and gives a lot
of opportunities to the users. Our method pro-
vides precise illustration in almost real time just
by changing parameter values interactively.

6 Conclusion

In this paper, we have presented a novel al-
gorithm for extracting features of stone tools.
Potential feature points are detected by local
surface fitting algorithm. Feature lines are ex-
tracted by the directional line growing algo-
rithm. In order to maintain form and manufac-
turing information of stone tools, the detected
features are modified with certain rules used in
stone tool illustration. By implementing com-
putation in the GPU, we could accelerate the
performance much more. The experimental re-
sults show that our algorithm is useful for stone
tool illustration.

– 44–

Vol. 12, No. 1, pp. 36 – 47

Table 1: Timings (in seconds) of the implementation steps: (a) smoothing, (b) surface fitting, (c)
line extraction, and (d) line modification

Figure # of points # of feature (a) (b) (c) (d) Overall
points procedure

CPU 0.866 0.467 0.134 0.033 1.622
1 18270 4351 GPU 0.151 0.049 0.096 − 0.497

CPU 6.22 3.586 1.22 0.193 12.61
9 101588 19816 GPU 0.358 0.242 0.851 − 3.15

CPU 12.875 7.7 3.29 0.524 25.89
12 238290 39564 GPU 0.673 0.292 2.391 − 6.21

Figure 12: Illustrations of the front and back
sides of a stone scraper.

References

[1] M. Aaftab, R. G. Benedict, G. M. Timo-
thy, F. James, G. Dan, OpenCL Program-
ming guide, AddisonWesley Professional,
2011.

[2] L. R. Addington, Lithic illustration:
Drawing flaked stone artifacts for publi-
cation, The University of Chicago Press,
Chicago, Illinois, 1986.

[3] F. Cazals, M. Pouget, Estimating differen-
tial quantities using polynomial fitting of
osculating jets, Computer Aided Design,
Vol. 22, No. 2, pp. 121–146, 2005.

[4] F. Cazals, M. Pouget, Differential topology
and geometry of smooth embedded sur-
faces: selected topics, International Jour-
nal of Computational Geometry and Ap-
plications, Vol. 15, No. 5, pp.511–536,
2005.

[5] J. II Daniels, L. K. Ha, T. Ochotta, C.T.
Silva, Robust Smooth feature extraction
from point clouds, In Proceedings of the
IEEE International Conference on Shape
Modeling and Applications, pp.123–136,
2007.

[6] J. II Daniels, L. K. Ha, T. Ochotta, C.
T. Silva, Spline-based feature curves from
point-sampled geometry, Visual Comput,
Vol. 24, No. 6, pp.449–462, 2008.

[7] K. Demarsin, D. Vanderstraeten, T. Volo-
dine, D. Roose, Detection of closed sharp
edges in point clouds using normal estima-
tion and graph theory, Computer Aided
Design, Vol. 39, No. 4, pp. 276–283, 2007.

[8] A. Enkhbayar, Y. Muraki, F. Chiba, K.
Konno, 3d surface reconstruction of stone
tools by using four-directional measure-
ment machine, The International Journal
of Virtual Reality, Vol. 10, No. 1, pp. 37–
43, 2011.

[9] J. Goldfeather, V. Interrante, A novel
cubic-order algorithm for approximating
principal direction vectors, ACM Transac-
tions on Graphics, Vol. 23, No. 1, pp. 45–
63, 2004.

[10] M. Gopi, S. Krishnan, C. Silva, Surface re-
construction using lower dimensional local-
ized Delaunay triangulation, In Proceed-
ings of the EUROGRAPHICS, Vol. 19, No.
3, pp. 467–478, 2000.

– 45–

Vol. 12, No. 1, pp. 36 – 47

[11] S. Gumhold, X. Wang, R. Macleod, Fea-
ture extraction from point clouds, In Pro-
ceedings of the 10th International Meshing
Roundtable, pp. 293–305, 2001.

[12] K. Hildebrandt, K. Polthier, M. Wardet-
zky, Smooth feature lines on surface
meshes, In Proceedings of the Symposium
on Geometry Processing, pp. 85–90, 2005.

[13] H. T. Ho, D. Gibbins, Multi-scale feature
extraction for 3D models using local sur-
face curvature, In Proceedings of the 2008
Digital Image Computing: Techniques and
Applications, pp.16–23, 2008.

[14] A. Hubeli, M. Gross, Multiresolution fea-
ture extraction for unstructured meshes, In
Proccedings of the IEEE Visualization, pp.
287–294, 2001.

[15] K. Ikeuchi, T. Oishi, J. Takamatsu, R.
Sagawa, A. Nakazawa, R. Kurazume, K.
Nishino, M. Kamakura, Y. Okamoto, The
great Buddha project: digitally archiving,
restoring, and analyzing cultural heritage
objects, International Journal of Com-
puter Vision, Vol. 75, No. 1, pp. 189–208,
2007.

[16] S.-K. Kim, C.-H. Kim, Finding ridges and
valleys in a discrete surface using a modi-
fied MLS projection, Computer-Aided De-
sign, Vol. 37, No. 14, pp.1533–1542, 2005.

[17] I. Kyriazis, I. Fudos, L. Paios, Detecting
features from sliced point clouds, In Pro-
ceedings of the Second International Con-
ference on Computer Graphics Theory and
Applications, 2007.

[18] A. Lesley, A. Roy, Archaeological Illustra-
tion (Cambridge Manuals in Archaeology),
Cambridge Unversity Press, 1989.

[19] M. Levoy, K. Pulli, B. Curless, S.
Rusinkiewicz, D. Koller, L. Pereira, M.
Ginzton, S. E. Anderson, J. Davis, J.
Ginsberg, J. Shade, D. Fulk, The Digi-
tal Michelangelo project: 3D scanning of
large statues, In Proceedings of the SIG-
GRAPH, pp. 131–144, 2000.

[20] L. Linsen, Point cloud representation. Uni-
versity of Karlsruhe, Germany Technical
Report, Faculty of Informatics, 2001.

[21] Y. Ohtake, A. Belyaev, H. -P. Seidel,
Ridge-valley lines on meshes via implicit
surface fitting, In Proceedings of the ACM
SIGGRAPH, pp. 609–612, 2004.

[22] X. F. Pang, M. Y. Pang, Z. Song, Ex-
tracting feature curves on point sets, Inter-
national Journal of Information Engineer-
ing and Electronic Business, Vol. 3, No. 3,
pp.1–7, 2011.

[23] M. Pauly, R. Keiser, M. Gross, Multi-scale
feature extraction on point-sampled sur-
faces, Computer Graphics Forum, Vol. 22,
pp. 281–289, 2003.

[24] L. Piegl, W. Tiller, The NURBS book,
Springer Verlag, 1997.

[25] L. Renju, L. Tao, Z. Hongbin, 3D Digiti-
zation and its applications in cultural her-
itage, In Proceedings of the international
conference on digital heritage, pp. 381–
388, 2010.

[26] G. Taubin, Curve and surface smooth-
ing without shrinkage, In Proceedings of
the fifth International Conference on Com-
puter Vision, pp.852–857, 1995.

[27] K. Watanabe, A. G. Belyaev, Detection
of salient curvature features on polygonal
surfaces, Computer Graphics Forum, Vol.
20, No. 3, pp.385–392, 2001.

[28] C. Weber, S. Hamann, H. Hagen, Sharp
Feature Detection in Point Clouds, In Pro-
ceedings of the IEEE International Confer-
ence on Shape Modeling and Applications,
2010.

[29] T. Weinkauf, D. Günther, Separatrix per-
sistence: Extraction of salient edges on
surfaces using topological methods, Com-
puter Graphics Forum (Symp. on Geom-
etry Processing), Vol. 28, pp.1519–1528,
2009.

[30] S. Yoshizawa, A. Belyaev, H. -P, Seidel,
Fast and robust detection of crest lines on
meshes, In Proceedings of the ACM sym-
posium on Solid and physical modeling,
pp. 227–232, 2005.

– 46–

Vol. 12, No. 1, pp. 36 – 47

Enkhbayar Altantsetseg received the BS and
MS in mathematics from National University of
Mongolia in 1995 and 1997, respectively. He
is currently working toward the PhD degree
in computer science at Iwate University. His
research interests include computer graphics,
geometric modeling, illustrative visualization,
medical visualization and simulation.

Yuta Muraki is currently a Post-doctoral Fel-
low in Faculty of Engineering at Iwate Univer-
sity. His research interests include geometric
modeling, CG, CAD and 3D scanning. He re-
ceived the B.E. and M.E. degrees in Computer
and Information Sciences, and the D.E. degree
in Electronic Information Science from IWATE
University in 2005, 2007, and 2010, respectively.
He is a member of JSPE.

Katsutsugu Matsuyama is currently an as-
sistant professor at Iwate University. His re-
search interests include computer graphics, in-
formation visualization and interactive systems.

He received BE, ME, DE degrees in computer
science from Iwate University in 1999, 2001 and
2005, respectively. He was a research asso-
ciate at Future University-Hakodate from 2005
to 2011.

Fumito Chiba is a director of LANG Co.,
LTD. He received a bachelor of engineering from
Iwate University in 1996. He earned his Dr.
Eng. in Electrical Engineering and Computer
Science from Iwate University in 2000. He
worked on an assistant professor of Faculty of
Engineering at Iwate University from 2000 to
2005. His research interests include 3D mea-
surement systems and image processing. He is
a member of Japan Society for Archaeological
Information.

Kouichi Konno is a professor of Faculty of En-
gineering at Iwate University. He received a BS
in Information Science in 1985 from the Uni-
versity of Tsukuba. He earned his Dr. Eng. in
precision machinery engineering from the Uni-
versity of Tokyo in 1996. He joined the solid
modeling project at RICOH from 1985 to 1999
and the XVL project at Lattice Technology in
2000. He worked on an associate professor of
Faculty of Engineering at Iwate University from
2001 to 2009. His research interests include vir-
tual reality, geometric modeling, 3D measure-
ment systems, and computer graphics. He is a
member of IEEE CS.

– 47–

