
芸術科学会論文誌 Vol.11, No.3, pp.92-101

92

Stochastic Extension Method for Animating Water Flows

Gantulga TSEDENDORJ Norishige CHIBA

Graduate School of Engineering, Iwate University

{ganaa@cg., nchiba@}cis.iwate-u.ac.jp

Abstract
We present a simple and efficient method for animating different types of water flows with

emphasis on a surging wave. The method employs a stochastic approach of extending 2D

simulation data into 3D animation space. For the reality of a wave motion along the direction

of its dominant propagation, we utilize a physically-based, particle simulation at the

pre-processing step and extract surface and splash particles only. At the animation step, these

2D surface frames are stochastically sampled along the transverse direction in the animation

time and slice (called time-slice) domain with the aid of a user-defined noise function. For

the surface reconstruction in 3D, we use a geometrical technique with a smoothing filter in

order to remedy undesired 2D artifacts that result from the slice sampling. In conjunction

with appropriate supplements, we apply our method to other types of water flows, indicating

further interesting applications of a ripple wave and a whirlpool rotation.

Keywords: natural phenomena, physically-based simulation, stochastic extension

1. Introduction

Due to its excessive complexity, animating a large-

scale water phenomenon with high performance and

computational efficiency still presents a major

challenge in the computer animation field. The main

reason for this is that a full 3D physically-based

simulation (thus animation) requires a tremendous

amount of computational work, especially when a large

volume of water needs to be simulated. Furthermore,

tracking and extracting water surface for rendering is a

problem on its own. On the other hand, parametric or

spectral approaches based on procedural techniques

such as Gerstner wave or Fourier synthesis, are

suitable only for animating a relatively calm motion in

deep water.

One of the effective ways to solve this problem is

through the extension of 2D simulation data into 3D.

We start from the reasonable assumption that the

transverse motion of the water, is negligible compared

to its most dominant motion in the horizontal and

vertical directions. This leads to the idea of simulating

water wave in 2D and then extending these data into

3D animation. In this setting, the animation space

transversally is represented by a sequence of uniformly

spaced 2D simulation slices (Figure 1). In this way, it

uses a small number of 2D particles in order to create a

3D wave, whereas a direct 3D particle simulation

would use all the water particles involved in it. Clearly,
by reducing the simulation dimension of the problem,

this approach would considerably reduce the

computation costs involved in the simulation as well as

in the animation steps. However, this dimensional

extension approach presents a problem of producing a

3D animation from the limited simulation data, which

is an interesting and a complex topic.

Figure 1. Animation space is composed

of 2D slices (x, y-direction of wave

propagation; z-transverse direction)

In this study, we present a stochastic extension method

for animating different types of water flows with

emphasis on a surging wave. At the pre-processing step,

for generation of 2D wave, we utilize a

physically-based, particle simulation, which enables us

to capture complicated water dynamics such as wave

breaking, merging and collision of two opposite waves

with each other. During the wave simulation, we

classify water particles and extract only surface and

splash particles for the next step. At the animation step,

these 2D simulation particles are stochastically

sampled in 3D in the animation time and slice

(time-slice) domain. Finally, 3D surface is
reconstructed by the use of a geometrical technique

芸術科学会論文誌 Vol.11, No.3, pp.92-101

93

with a 2D smoothing filter in the direction of wave

propagation as well as in its transverse direction.

Figure 2. An example of a surging wave

(produced by our method).

During our simulations, splash-like particles are

automatically generated owing to our classification of

water particles.

Our method comprises various types of waves, ranging

from a ripple wave to a surging wave (except

overturning plunging breaker). In view of the fact that

a wave is a complicated phenomenon with high degree

of complexity, we do not aim to capture all the

dynamics of this process, but only to focus on its

overall visual realism (Figure 2).

In addition to the surging wave, we apply our method

to a ripple wave and a whirlpool, indicating further

interesting applications.

We emphasize that any adequate grid or particle-based

simulation method can be employed to generate

desired water flows in 2D, as discussed above.

2. Related Work

A variety of approaches have been developed to

represent water phenomena under various

circumstances. Here, we give a brief overview of the

most relevant methods.

Early and (still continuing) methods for animating

water flows are mostly based on parametric

representations for generating procedural water surface

in [1] and [2] followed by [3] and [4]. For animation of

open water phenomena, such as ocean waves,

spectral-type methods have been developed to simulate

water surface in [5], [6] and [7]. Since such methods

are ultimately based on sinusoidal modeling of the

water surface, they are not capable of easily dealing

with more complicated water dynamics. A summary of

the above procedural methods and their application to

modeling and rendering can be found in [8].

With the attempt to obtain more realistic water
representation with a splashing effect, [9] and [10]

used a height-field model combined with a particle

system. The visual quality of water phenomenon was

further improved by adding particles for spray and

foam in [11]. In [12], full 3D simulation of an

overturning breaking wave was performed by

controlling the user-defined 2D slice library. A recent

work on shallow water simulation for breaking wave

can be found in [13], where a real-time plunging

breaker with a splashing effect was achieved. This is

done by detecting a line along steep wave front and

generating a wave patch to represent an overturning

effect. Most recently, real-time 3D simulations of

various large-scale water scenarios were performed on

the GPU in [14] and [15]. The former used a

specialized shallow water solver and the latter used

Eulerian simulation on a hybrid grid with an optimized

multi-grid algorithm.

In order to reduce the overall computational

complexity involved in full 3D simulation, researchers

have also proposed methods for reducing the number

of cells so as to accelerate grid-based fluid simulations

by using an octree grid structure in [16] and tetrahedral

meshes in [17]. Adaptive sampling algorithms for

particle-based simulations are proposed by [18] and

[19], focusing computational resources on

geometrically complex regions, while reducing the

number of particles deep inside the fluid. Furthermore,

3D simulations have been combined with 2D

techniques. In [20], a 2D simulation was performed

beneath a layer of full 3D simulation, while in [21], a

2D shallow water simulation was coupled to the full

3D free surface fluid simulation.

In addition to these approaches, dimensional extension

approach of synthesizing 2D simulation into 3D

animation was proposed by [22] for animating a wave

by synthesizing 2D velocity field, whereas in [23] a

large-scale explosion was animated by using

cylindrical interpolation with Kolmogorov spectrum.

In [24] and [25], a noise-based synthesis was used in

order to animate a surging breaker. Lately, dimensional

extension was used to simulate a highly-detailed fire

on parallel GPUs in [26].

In this study, we extend our method in [27] which is a

development of the idea proposed by [24] with the

following contributions:

 Introduction a new stochastic term which

provides our method more controllability;

 Detailed investigation on the usage of the

fractional Brownian motion (fBm) noise in

particular, effect of Low/High-Pass Filter
(LPF/HPF) and the parameter β (relation to

complexity/shape of wave front);

 Polygon generation for rendering, including

surface particle detection, LPF for slice sampling;
 Application to other types of water flows such as

a ripple wave and a whirlpool rotation.

芸術科学会論文誌 Vol.11, No.3, pp.92-101

94

Our animation method consists of the following steps:

first, we generate two different types of water waves in

2D and classify water particles in the MPS method

(Section 3). Next, in Section 4, these surface wave

slices are sampled in the time-slice domain by our

stochastic sampling method in 3D. The final wave

surface is reconstructed by use of a geometrical

technique with the Gaussian filter. Finally, rendering is

performed with the aid of environmental mapping

taking into account the primary optical properties of

water such as reflection, refraction and Fresnel effect

with the surrounding illumination (Section 5). The

paper is concluded with the discussion and remarks on

future work (Section 6).

3. Simulations in 2D

In this section, we classify water particles by a

density-based approach and generate desired wave

motions using the MPS method (for details see [28],

[29]).

3.1 Simulation Method

Generally, water dynamics can be described by the

following differential equations:

where u is velocity, t is time, ρ is density, p is pressure,

ν is viscosity, f is external force.

The MPS method is designed to solve Equations (1)

and (2) via particle interactions. After applying the

pressure projection scheme to Equation (2), the MPS

method discretizes and transforms them into particle

interaction equations. All interactions between

particles are limited to within a given cut-off radius re.

The weight of interaction between two particles is

defined as

where r is the distance between two particles i and j at

positions ri and rj respectively,

In the MPS method, local density of the fluid is

represented by Particle Number Density (PND). PND

for particle i is defined as

Because no particles exist in the outer region of a free

surface, the PND decreases for particles that are on or

over the free surface. Thus, a water particle i that

satisfies the condition:

where n
0
 is the standard PND and δ is a threshold, is

considered to be on the free surface. Finally, solid

boundaries such as a wall or other stationary objects

are represented by fixed particles (with zero velocity).

3.2 Classification of Water Particles

In order to cope with surface reconstruction in 3D, we

first detect surface particles during the simulation using

a simple density-based approach. It is worth noting that

any adequate surface tracking method (for overview

see [30]) can be used in our case, since 2D simulation

as well as the corresponding surface particle extraction

is performed at the pre-processing step.

We classify water particles depending on their PNDs.

Advantage of this simple classification is that it gives

us a reasonable approximation of surface and splash-

like particles with no special treatment or computation.

A water particle is classified according to Definition

(3) with the following modification: particle i is

considered to be

a splash particle, if

 on the surface, if

 in the deep water, if

where δ1 and δ2 are user-defined thresholds, is satisfied.

3.3 Wave Simulations

In our method, simulations of two different waves are

carried out. The basic routine of our simulation by the

2D MPS method is summarized in Algorithm 1.

Algorithm 1. Simulation of Water Wave

1. Initialize simulation environment
2. for each time step
3. Move pushing wall (in case of surging wave)

 or Add particles (in case of ripple wave)
4. Compute and apply forces to particles
5. Advect particles
6. Set neighborhood and calculate PND
7. Extract surface/splash particles by (4)
8. Delete particles (in case of ripple wave)
9. end for each

Some important simulation parameters and their values

that used in our experiments are shown in Table 1. The

simulation container of each case is represented by
fixed particles, while water is represented by regular

particles. In our experiments, two main types of

0
t


 


u

21
p

t





      

u

u u u f

(1)

(2)

/ 1, 0
()

 0,

e e

e

r r r r
w r

r r

     

j ir  r r

()i j i

j i

n w


  r r

0
in n (3)

0
1in n

0
2in n

0 0
1 2in n n   (4)

芸術科学会論文誌 Vol.11, No.3, pp.92-101

95

particles are used in each simulation (Table 2).

Table 1. Simulation parameters & values used

Parameter Notation Value

Density ρ 1000

Viscosity ν 0.0011

Gravity g 9.81

Boundary parameters δ1 / δ2 0.49 / 0.96

Timestep Δt 0.001

As noted previously, the classification of water

particles drastically reduces (up to 26 times!) the total

number of particles involved in the animation step

(Table 3).

Table 2. Num. of particles during simulations

Simulation
Water

particles

Fixed

particles

Time /hrs./

(iterations)

Surging wave 8376 1662 3.74 (12K)

Ripple wave 6884 1134 2.11 (10K)

The variation of the number of particles are associated

with the varying numbers of water body, surface and/or

splash particles at each simulation time step in each

particular simulation.

Table 3. Approx. num. of particles after simulations

Simulation
Surface/splash

particles

Particle

reduction /times/

Surging wave 322 26

Ripple wave 284 18

In the case of the whirlpool, the same simulation data

as for the ripple wave is used.

3.3.1 Surging Wave

For generation of a surging wave (with no overturning),

we use a piston-type method with a pushing wall. The

pushing wall periodically moves back and forth in a

random manner, maintaining wave motion during the

entire simulation (Figure 3a). The corresponding

screenshot of the simulation is shown in Figure 4a.

3.3.2 Ripple Wave

In the case of a ripple, we employ a similar way to that

described in [31] by using an inflow-outflow scheme

together with the particle recycling strategy (Figure

3b). The screenshot is shown in Figure 4b.

Figure 3. Simulation environments

for a) surging and b) ripple waves.

Figure 3. Screenshot of a) surging and b) ripple

waves. Blue-surface particles, yellow-splashes.

4. Animations in 3D

In this section, we proceed in extending 2D surface

waves obtained from the simulation step, into 3D by

the use of our stochastic extension method. For the 3D

surface reconstruction, we use a 2D Gaussian filter.

4.1 Stochastic Extension Method

First of all, it is easy to imagine that if a single 2D

wave surface were to be duplicated in 3D, the resulting

surface would look absolutely uniform along the

transverse direction (Figure 8a). Our method removes

this unnatural uniformity of sampling the same 2D

simulation frame at every animation time step.

Our slice sampling process is performed by the

following stochastic formula:

where s
i
k is simulation frame, i=0,1,...,T-1, is animation

time, k=0,1,...,K-1, is animation slice, N is noise

function, F is parameter for noise fluctuation range and

parameter A controls the animation speed. Notation [.]

is for the nearest integer.

In order to describe how our method works, let us

consider a simulation frame sequence at animation

time interval [i, i+1]. Simulation frame s
i
k for current

slice k is selected according to the stochastic Formula

(5) under Constraint (6) as shown in Figure 5. Once all

the slices are filled out by randomly selected frames,

the slices are linearly sampled for the construction of a

3D wave shape. Constraint (6) ensures that no abrupt

backward and/or forward frame transitions occur

during the course of entire animation.

Figure 5. Slice sampling process.

(5)

(6)(,) 1F N i k 

 ((,))i
ks i F N i k A   

)a

)b

)a

)b

芸術科学会論文誌 Vol.11, No.3, pp.92-101

96

For the replacement of the noise function N, we take

fractional Brownian motion (fBm or also known

as) noise. The fBm noise is fully controllable by

its power spectrum which is inversely proportional to

frequency f to the power of the parameter β. The value

of β determines the noise correlation (Figure 6). The

larger value of β, the smoother noise and zero

corresponds to a white noise. It is well known that the

fBm noise is observed in many natural phenomena,

such as fluid phenomena that exhibit a waving pattern

[32]. In our method, we have implemented 2D fBm

noise through spectrum synthesis technique based on

the Fast Fourier Transform [33].

Figure 6. Examples of 1D fBm noise with various β.

4.2 Surface Approximation

In order to deal with surface reconstruction, we use a

height-field technique with the Gaussian filter. This

allows us to reconstruct water surface in 3D with a

reasonable approximation, while remedying line-like

artifacts that result from the sampling of 2D slices.

To start with the height-field construction, we create a

uniform base mesh of size N×M on the XZ horizontal

plane as follows:

where n=0,..,N-1,m=0,..,M-1; ∆x,∆z - mesh steps.

As soon as the slice sampling is done by Formula (5)

and (6), height for the center point P=(Px, Pz) of each

cell [xn, xn+1]×[zm-1, zm+1] of the base mesh IXZ is

approximated by the following weighted average:

where
2 2 2(() ()) 2(,) x zx P z PG x z e     is the Gaussian

weight and hl's are surface particles' heights in the

neighboring cells.

For a better result, we insert an extra slice between two

neighbor slices and set cut-off area of size [3∆x, 2∆z)

for the Gaussian filtering with σ = 2.0 (Figure 7).

Throughout the surface reconstruction process, the

corresponding splash particles are left untouched.

Figure 7 (Top view) Cell center P on base mesh IXZ

(blue dashed lines represent inserted slices).

4.3 Surging Wave

In order to obtain a 3D wave from 2D slices, we have

assumed that the transverse motion of the wave is

negligible compared to its motion in the horizontal and

vertical directions. This assumption allows us to

perform a straightforward sampling of the 2D surface

waves along the transverse direction in the time-slice

domain in 3D. An outline of our animation process is

shown in Algorithm 2a.

As mentioned before, one of the advantages of our

method is that it has more flexibility that provides

more parameter controllability. Regenerating the noise

N and/or controlling its fluctuation F leads to a variety

of surface shapes: varying from a unrealistic looking

surface (Figure 8) to a more realistic one (Figure 9).

Algorithm 2a. Animation of Surging Wave

1. Initialize 2D slices
2. for each time step
3. for each slice
4. Set current slice by (5) and (6)
5. end for each
6. Reconstruct surface by (7)
7. end for each

By observing waves in nature, it can be seen that a

wave front has rather a smoother shape, not a sharp,

rough shape with abrupt changes. To achieve this effect,

we generate low-pass filtered fBm noise.

Figure 8. Surging wave sampled with a) plain

duplication i.e., F=0 and b) HPF, F=0.5; β=1.5.

{(,) : , }XZ n m n mI x z x n x z m z    

() (,) (,)l l l

l l

h P G x z h G x z  (7)

)a

)b

1 f 

芸術科学会論文誌 Vol.11, No.3, pp.92-101

97

Moreover, the use of the LPF and a larger value of the

parameter β avoids to create undesired zigzag-like

connectivity between neighboring slices (see Figures 8

and 9 for comparison).

Figure 9. Surging wave sampled with LPF and

F=0.5 a) β=1.5 and b) β=2.8.

4.4 Ripple Wave

In the case of a ripple wave, we proceed in a slightly

different way by synthesizing several waves in different

directions. In this way, it eliminates the uniform

appearance along the transverse direction which would

arise from the motion in a single direction.

To begin this process, we consecutively apply the slice

sampling and surface reconstruction processes to each

particular direction. For the approximation of the final

height h(P) for each cell center P on the base mesh IXZ,

we synthesize heights of the closest neighbors in each

direction by

where ω is user-defined weight and hd are heights of

neighbor points Q's in direction d (Figure 10).

Figure 10 (Top view) Height

approximation in direction d.

Our synthesis algorithm for a ripple wave is outlined in

Algorithm 2b. In our experiment, we approximate final

heights as an average of bi-linearly interpolated

neighboring heights in two different directions. It is
experimentally found that about 30º difference between

these directions produces a better result.

Algorithm 2b. Animation of Ripple Wave

1. Initialize 2D slices in each direction
2. for each time step
3. for each direction
4. for each slice
5. Set current slice by (5) and (6)
6. end for each
7. Approximate surface by (7)
8. end for each
9. Synthesize heights by (8)
10. end for each

4.5 Whirlpool

Whirlpool is another example to show the flexibility of

our method. For whirlpool animation, after applying

Formula (5) and (6) to the slices, following Algorithm

2a, we transform them into spirals:

where t is parameter in [0,2π] and a, b are constants.

For slice sampling, we use a radial sampling so that the

spiral ends are centered round the whirlpool center. In

this way, it provides more turbulence closer to the

center (Figure 11).

Figure 11 (Top view) Blue curve represents

single spiral-shaped slice.

In our experiment, we take a=15∆x and b=25∆z.

5. Results

We use environmental cube mapping for rendering

each case of the water phenomena, taking into account

the primary optical properties of water such as

reflection, refraction and the Fresnel effect with the

surrounding illumination. In the case of the surging

wave, we generate additional artificial splash particles

in spherical region around the actual ones. These

additional splashes have random properties such as

initial positions, velocities, and lifetimes, based on

those of the actual splash particles and are rendered by

point sprites.

For performance evaluation purpose, we implemented

each animation on the CPU and used a machine

Intel(R) Core(TM) Q9550 2.83GHz with 4GB RAM.

The implementation of each animation is simple,
straightforward and the code is written in C++ using

OpenGL libraries (with no optimization). The size of

() (())d

d Q

h P h Q (8)

() cos(); () sin()bt btx t ae t z t ae t 

)a

)b

芸術科学会論文誌 Vol.11, No.3, pp.92-101

98

the (normalized) fBm noise is T=16 × K=256 in the

time-slice domain, except the case of whirlpool, where

only K=128 slices are used. An example of the 2D fBm

noise that we used in our experiment of surging wave

animation is shown in Figure 12. The values used for

the noise parameters are provided in Table 4, where c is

cut-off frequency of the LPF in each animation.

Animation parameters and results are shown in Table 5.

Parameter A which is inversely proportional to the

simulation time step Δt=0.001, is taken to be 4/Δt.

Table 4. Noise parameters

Animation c β F

Surging Wave 128 2.0 0.3

Ripple Wave 128 2.5 0.4

Whirlpool 64 2.5 0.4

Table 5. Animation parameters

Animation
Resolution

(N×M)

Slices used

(K)
fps

Surging Wave 128×128 256 12

Ripple Wave 128×128 256 10

Whirlpool 128×128 128 17

We provide screenshot sequences of our animations in

Figures 2, 13 and 14.

Figure 12 The 2D fBm noise used

in our animation, where β=2.

6. Conclusions and Future Work

In this study, we present an efficient method for

creating a 3D animation from the limited 2D

simulation data. It uses a small number of 2D surface

particles in order to create a 3D wave, whereas a direct

3D particle simulation would use all the water particles

involved in it. For instance, a full 3D MPS simulation

would require over half a million particles to animate a

surging wave of our scale (see Tables 2 and 3 for

comparison).

Our stochastic extension method combined with 2D

physically-based, particle simulations is used to

animate different types of water flows, ranging from a

ripple to a surging wave, including a whirlpool-like
rotation. It also seems feasible to apply the presented

method to other types of water flows, for instance,

animating a fountain with cylindrical slice sampling. It

is simple to implement our animation method as it

requires no knowledge of advanced physical modeling

(except simulation part).

The main limitation in the method is that the water

must have the dominant flow direction, since the final

3D animation is composed of 2D slices. This restriction

can be dropped in some cases as we did it in the ripple

and whirlpool animations. Furthermore, to allow the

re-use of 2D simulation frames, we assume that the

terrain under water body should be uniform in the

transverse direction. Our animations do not allow

interactions with external objects and it should be

further investigated. Our method can be used to

produce background or outdoor scenes in applications

where interactivity is not required.

As the main part of future work, we would like to focus

on in extending our method so that the animations

could run for a longer time period than the

pre-computed 2D simulation data would allow. For

comparison purpose, we would also like to implement

our animations on the GPU.

Acknowledgment

This work was supported by JSPS KAKENHI Grant

Number 24300032.

References
[1] A. Fournier and T. Reeves. A simple model of ocean

waves. In Proceedings of SIGGRAPH, Vol. 20, pp.75-84,

1986.

[2] D. R. Peachey. Modeling waves and surf. In Proceedings

of SIGGRAPH, pp.65-74, 1986.

[3] J. C. Gonzato and B. L. Saec. On modeling and rendering

ocean scenes, Journal of Visualization and Computer

Simulation, Vol. 11, pp.27-37, 2000.

[4] S. Jeschke, H. Birkholz, and H. Schmann. A Procedural

Model for Interactive Animation of Breaking Ocean

Waves, WSCG'2003 POSTERS Proceedings, 2003.

[5] G. Mastin, P. Watterberg and J. Mareda, Fourier synthesis

of ocean scenes, IEEE Computer Graphics and

Applications, Vol.7, No.3, pp.16-23, 1987

[6] S. Thon, J. M. Dischler and D. Ghazanfarpour. Ocean

waves synthesis using a spectrum-based turbulence

function, In Proceedings of the International Conference

on Computer Graphics, IEEE Computer Society, pp.65,

2000

[7] J. Tessendorf. Simulating Ocean Surfaces. SIGGRAPH

Course Notes, 1999 (updated in 2001 and 2004).

[8] E. Darles, B. Crespin and D. Gazanfarpour. A survey of

ocean simulation and rendering techniques in computer

graphics, Computer Graphics Forum, Vol. 30, No. 1

pp.43-60, 2011.

[9] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of

splashing fluids. In Proceedings of the Computer

Animation, IEEE Computer Society, pp.198, 1995

芸術科学会論文誌 Vol.11, No.3, pp.92-101

99

[10] M.M. Maes, T. Fujimoto and N. Chiba. Efficient animation

of water flow on irregular terrains. In Proceedings of Int.

Conference on Computer graphics and Interactive

techniques, GRAPHITE’06, pp.107-115, 2006.

[11] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito,

K. Tanaka and H. Ueki. Realistic animation of fluid with

splash and foam. Computer Graphics Forum, Vol. 22, No.

3, pp.391-400, 2003

[12] V. Mihalef, D. Metaxas and M. Sussman. Animation and

Control of Breaking Waves, In Proceedings of the

SIGGRAPH/Eurographics Symposium on Computer

Animation, pp.315-324, 2004.

[13] N. Thurey, M. Muller-Fischer, S. Schirm and M. Gross.

Real-time breaking waves for shallow water simulations. In

Proceedings of the Pacific Conference on Computer

Graphics and Applications, pp.39-46, 2007.

[14] N. Chentanez and M. Muller. Real-time simulation of large

bodies of water with small scale details. In Proceedings of

the ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pp.197-206, 2010.

[15] N. Chentanez and M. Muller. Real-time Eulerian water

simulation using a restricted tall cell grid. ACM

SIGGRAPH 2011 papers, SIGGRAPH '11, pp.1-10, 2010.

[16] F. Losasso, F. Gibou and R. Fedkiw. Simulating water and

smoke with an octree data structure. In Proceedings of the

ACM SIGGRAPH, pp.457-462, 2004.

[17] N. Chentanez, B. E. Feldman, F. Labelle, J. O’Brien and J.

Sewchuk. Liquid simulation on lattice-based tetrahedral

meshes. In Proceedings of the ACM SIGGRAPH/

Eurographics Symposium on Computer Animation, pp.

219-228, 2007.

[18] B. Adams, M. Pauly, R. Keiser and L. Guibas. Adaptively

sampled particle fluids. ACM Transactions on Graphics,

Vol. 26, No. 3, pp.48, 2007.

[19] W. Hong, D. House and J. Keyser. Adaptive particles for

incompressible fluid simulation. The Visual Computer,

Vol. 24, No. 7, pp.535-543, 2008.

[20] G. Irving, E. Guendelman, F. Losasso and R. Fedkiw.

Efficient simulation of large bodies of water by coupling

two and three Dimensional Techniques. ACM Transactions

on Graphics, Vol. 25, pp.805-811, 2006.

[21] N. Thurey, U. Rude and M. Stamminger. Animation of

open water phenomena with coupled shallow water and

free surface simulations. In Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, pp.157-164, 2006.

[22] S. Thon and D. Ghazanfarpour. Real-time Animation of

Running Waters Based on Spectral Analysis of

Navier-Stokes equations. In Proc. of Computer Graphics

International, pp.333-346, 2002.

[23] N. Rasmussen, D. Q. Nguyen, W. Geiger and R. Fedkiw.

Smoke simulation for large scale phenomena. ACM Trans.

Graph. Vol. 22, No. 3, pp.703-707, 2003.

[24] T. Fujimoto, S. Miyauchi, T. Suzuki and N. Chiba.

Noise-based Animation of Waving Phenomena. In Proc.

IWAIT2005, IEICE technical report. Image engineering.

Vol. 104, No.545, pp.93-98, 2005.

[25] Q. Wang, Y. Zheng, C. Chun, T. Suzuki, T. Fujimoto and

N. Chiba. Efficient Rendering of Breaking Waves Using

MPS Method. Journal of Zhejiang University SCIENCE A.

Vol.7, No.6, pp.1018-1025, 2006.

[26] C. Horvath and W. Geiger. Directable, high-resolution

simulation of fire on the GPU. ACM Trans. Graph. Vol.

28, No.3, pp.1-8, 2009.

[27] G. Tsedendorj and N. Chiba. An efficient method for

animating breaking wave. NICOGRAPH International

conference, Fluid Simulation section, No. 3-2, 2011.

[28] S. Koshizuka, A. Nobe and Y. Oka. Numerical Analysis of

breaking waves using the MPS method. Int. J. Numer.

Methods in Fluids, Vol. 26, pp.751-769, 1998.

[29] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn and R. T.

Whitaker. Particle-based simulation of fluids. Computer

Graphics Forum. Vol.22, No.3, pp.401-410, 2003.

[30] M. Muller, C. Wojtan and T. Brochu. Liquid simulation

with mesh-based surface tracking. SIGGRAPH 2011

Course Notes, 2011.

[31] A. Shakibaeinia and Y. C. Jin. A weakly compressible

MPS method for modeling of open-boundary free surface

flow. Int. J. Numer. Meth. Fluids, Vol.63, pp.1208-1232,

2010.

[32] B.B. Mandelbrot. The fractal geometry of nature. W. H.

Freeman and Company, New York, 1981.

[33] H. O. Peitgen and D. Saupe. The Science of fractal image.

Springer Verlag, 1988.

芸術科学会論文誌 Vol.11, No.3, pp.92-101

100

Gantulga Tsedendorj is a PhD candidate at the

Department of Computer Science, Iwate University.

His research interests include Mathematical Modeling

and Physically-based Computer Simulation and

Animation. He studied at the Faculty of Computational

Mathematics and Cybernetics, Moscow State

University, 1990-1994. He received his BS and MS

degrees in Applied Mathematics from the National

University of Mongolia and University of Colorado at

Denver in 1997 and 2002, respectively. He has worked

previously as an instructor at the Ulaanbaatar

University, 1997-2003 and as a researcher at the

Institute of Mathematics, National University of

Mongolia, 2003-2004. He currently is a lecturer of

Computational Mathematics at the School of

Mathematics and Computer Science, National

University of Mongolia.

Norishige Chiba is currently a Professor in the

Department of Computer Science at Iwate University.

His research interests include Computer Graphics,

Laser Graphics and Interactive Graphics. He received a

BE in electrical engineering from Iwate University and

an ME and DE in information engineering from

Tohoku university in 1975, 1981 and 1984,

respectively. He worked at Nippon Business

Consultant Co., Ltd from 1975 to 1978. He was a

research associate in the Department of

Communication Engineering at Tohoku University

from 1984 to 1986, an associate professor of the

Department of Computer Science at Sendai National

College of Technology from 1986 to 1987 and an

associate professor of the Department of Computer

Science at Iwate University from 1987 to 1991. He is a

member of The Society for Art and Science, IPS, IEEE

and ACM.

芸術科学会論文誌 Vol.11, No.3, pp.92-101

101

Screenshots of the animation experiments

2D

simulation

Plain

duplication

i.e., F = 0;

Sampling

with HPF

where

F=0.3;

β=2.0;

c=128;

Sampling

with LPF

where

F=0.3;

β=2.0;

c=128;

Figure 13. Animation of a surging wave with splashes.

Sampling

with LPF

where

F=0.4;

β=2.5;

c=128;

Sampling

with LPF

where

F=0.4;

β=2.5;

c=64;

Figure 14. Animations of ripple and whirlpool.

