
Vol. 10, No. 3, pp. 87 – 97

Skeleton-based Adaptive In-between Generation for

Hand-drawn Key Frames

Fumihito Kyota† Eiji Sugisaki‡1

Hock Soon Seah‡ Masayuki Nakajima†

† Tokyo Institute of Technology ‡ Nanyang Technological University
†{kyota, nakajima}@img.cs.titech.ac.jp ‡{SEIJI, ASHSSEAH}@ntu.edu.sg

Abstract
For improving the efficiency of 2D animation production, this paper presents a method to create in-between
frames based on hand-drawn key-frames. The outlines of characters or objects on two key-frames are used
as inputs. First, a skeleton linkage of the target object is automatically constructed by rasterizing each
of input key-frames and then applying a pixel-based skeleton extraction method. Secondary, a pair of
skeleton linkages having corresponding structure between the current key-frame and the next key-frame is
constructed by applying the stroke matching algorithm. After these processes, motion transitions between
the skeleton linkages are generated based on our simulation model. When the in-between frames are created
only in the 2D plane, the outlines at in-between frames can be generated by a 2D deformation. In case
that the in-between transitions are containing a rotation around an axis which is no perpendicular to the
drawing plane, however, a 3D structure is required. For achieving such in-between transitions, our method
constructs a 3D structure by inflating 2D mesh based on the input outlines. Finally, the contours from the
view-point for the created 3D structure are projected onto the 2D plane during in-between transitions. In
our method, we adopt the Photic Extremum Lines (PEL) to extract the 2D contours from the obtained 3D
shape. In this way, we achieve the in-between creation containing spatial rotation such as hand-flipping,
which has not been achieved by general ways of in-between creation method.

Keywords
2D Animation, In-betweening, 3D Model, Physical Simulation, Line Drawing

1 He is currently working for Digital Magic Ltd., China

– 87–



Vol. 10, No. 3, pp. 87 – 97

1 Introduction

Creating in-between frames is a fundamental
process for 2D animation production. At the same
time, drawing in-between frames is considered as
one of the most labor-intensive procedures. For
producing a smooth animation sequence, key-frame
animators (they are usually more skilled than in-
between animators) first draw key-frames and in-
between animators then draw in-between frames
according to the drawn key-frames. In the anima-
tion production pipeline, the in-between creation
occupies a large proportion, approximately 60%, in
total labor [1]. Although the expanding of digitiza-
tion in the pipeline has progressed, the digitization
is just partially replacing the traditional ways. In
addition, the hand-drawing process is still consid-
ered as the typical style of 2D production pipeline
and has developed the most efficient way to achieve
the quality [2]. If in-between frames can be auto-
matically generated by computing, or even partly, a
huge amount of labor and time can be saved and it
provides opportunity to redeploy human resources
for more creative activities. From this point of
view, we propose an automatic in-between creation
method based on hand-drawn key-frames, which
can handle dynamic structural changes.

To achieve this, our method requires animators
to draw at least two key-frames and the outlines
of a character or an object in each layer is used as
inputs to our method. First, the skeleton linkage in
each key-frame is automatically constructed based
on the drawn outlines. The input contour lines are
rasterized into a binary image, and then applied
the skeleton extraction method [3]. Next, a linkage
structure is constructed from the extracted skele-
ton at each key-frame. The pair of skeleton link-
ages constructed from two key-frames must have
the same topology and the same number of joints.
Therefore, we solve the inconsistency of the ex-
tracted skeletons by using the stroke matching al-
gorithm [4].

In the next step, skeleton’s transitions during
in-between frames are generated by applying our
simulation model [5]. In fact the simulated mo-
tion transitions of skeletons are considered as in-
betweens. When the in-betweens are achieved only
in the 2D plane, the outlines during in-between
frames can be generated by using several 2D defor-
mation algorithms such as [6]. However, if the in-
betweens contain a rotation around z-axis which is
not perpendicular to the drawing plane, a 3D struc-
ture is required for creating convincing animation
otherwise the motion transition during in-betweens
collapses. Therefore, we create a 3D structure by
inflating 2D mesh constructed by the input out-
lines. The pixels of the rasterized image are con-
verted into vertices of 3D triangle mesh. A depth
value of each vertex is calculated by using the dis-
tance from the pixel to the edge of the shape. An-

imators can control the shape of the 3D mesh by
adjusting the depth function. The 3D mesh is di-
vided into individual parts corresponding to each
link of the skeleton linkage for simulating motions
appropriately.

Finally, the contours from the view-point for
the created 3D mesh are projected onto the 2D
plane during in-betweens. In fact, the deformed 3D
mesh based on the simulation result is illustrated
as 2D line drawings. In our method, the contours
are extracted by using the Photic Extremum Lines
(PEL) [7]. Thus, we achieve the in-between cre-
ation such as hand-flipping.

2 Related Work

We start with describing the overview of the
computer graphics techniques in cartoon anima-
tion, and then mentioning related work on simu-
lation and motion creation.

Lasseter [1] is likely the first researcher to de-
scribe the basic principles of traditional 2D hand-
drawn animation and their application to 3D com-
puter animation. In the paper, he clearly described
what cartoon animation is and what it requires of
an animator. Witkin and Kass [8] also described
the principles of how to create character animation
using physics properties. They achieved features
of the traditional animation such as anticipation,
squash-and-stretch, follow-through and timing.

Recently, 3D computer graphics techniques are
used in the Japanese “Anime” industry (e.g. the
movie “Ghost in the Shell” and “Innocence”). The
movie Appleseed is a landmark anime movie fea-
turing hyper realistic imagery and a hybrid 2D
and 3D style [9] [10]. Rademacher [11] proposed
a method for a 3D structure used in cel animation.
The reference hand-drawn image of an object or
a character often contains various view-dependent
distortions that cannot be described with conven-
tional 3D models. Therefore, given discretionary
view-dependent models, they interpolate the key-
deformations specific to the new viewpoint. They
thus capture the view-dependent inconsistencies of
the reference drawing. We referred their concept
accordingly.

Chen et al. [12] achieved a polished method to
create animation automatically by in-betweening
according to several 2D hand-drawing inputs. Zhou
et al. [13] proposed a method to apply non-rigid
and exaggerated deformations of 2D cartoon char-
acters to 3D meshes. Kondo et al. [14] directably
animate elastic objects. Their framework success-
fully provides realistic deformable animation and
gives animators controllability and usability. Ad-
ditionally, the main concept of this paper has been
presented in [15].

– 88–



Vol. 10, No. 3, pp. 87 – 97

Based on the previous work and their idea, we
have proposed a simulation-based in-between cre-
ation for hair motion [5]. However, the previous
simulation-based method has several limitations.
First, the method is specified to hair strands and
assumes that the skeletons at two key-frames have
the same topology. Therefore, the method cannot
handle dynamic structural changes between key-
frames. On the other hand, we solve the inconsis-
tency of the extracted skeleton by using the stroke
matching algorithm [4]. Secondly, motions which
can be generated by the previous simulation-based
method are constrained in the 2D plane. If the mo-
tions contain 3D rotation such as y-axis rotation,
the 2D deformation fails and generated in-between
frames most likely collapse. Our proposed method
therefore needs to have a 3D structure and it is
constructed from 2D outlines to be able to gener-
ate such a 3D motion. Our method proposed in this
paper can achieve the in-between creation such as
hand-flipping, which has not been created by the
above mentioned related work.

3 Skeleton Linkage Con-

struction

Animators have to draw at least two key-frames;
a source key-frame and a target key-frame. Our
method creates a pair of skeleton linkages from each
key-frame. For in-between creation, these skeleton
linkages are required for having the same topology
and the same number of joints.

3.1 Skeleton Extraction

First, a set of points on contour lines of a target
object is obtained from hand-drawing key-frames.
Note that hand-drawn strokes which depict the
character’s outline are converted into vectors rep-
resented by piecewise cubic Bezier curves in our
method. Therefore, the points on the strokes can
be selected automatically to create skeleton link-
ages. The input outlines are rasterized into a bi-
nary image, and then a pixel-based skeleton extrac-
tion method is applied to the rasterized image.

To avoid generating a too complicated skeleton,
we adopt an automatic skeleton pruning technique
proposed in [3]. The rasterized binary image is con-
sidered as a polygon whose vertices are boundary
pixels, and then the polygons are simplified by re-
moving vertices iteratively. This process is called
Discrete Curve Evolution (DCE) [16]. After the
DCE process, the contour line is partitioned into
several sections by the remaining vertices. Fig-
ure 1(a) and 1(b) show a rasterized binary image
and a simplified polygon by DCE, respectively.

(a) Input contour
lines

(b) After the DCE
process

(c) Extracted skele-
ton

(d) Pruned skeleton

Fig. 1: Skeleton extraction process.

The Euclidean Distance Transform (EDT) to the
binary image for a given shape is computed by [17].
The skeleton is grown recursively by adding points
that lie on dividing ridges of the EDT. Each skele-
ton point is corresponding to two boundary pixels
which belong to different contour sections. There-
fore, we establish a correspondence between con-
tour sections and skeleton paths. Figure 1(c) shows
an extracted skeleton and a reconstructed shape
from the skeleton.

Finally, the pruning method called Discrete
Skeleton Evolution (DSE) [3] iteratively removes
skeleton end branches with smallest relevance. Fig-
ure 1(d) shows the final pruned skeleton pixels. In
this way a linkage structure of these skeleton pixels
are constructed.

3.2 Skeleton Graph Matching

The skeleton extraction process mentioned above
is applied to the two key-frames. If the structures
between these obtained skeleton graphs are not cor-
responding, a matching algorithm is required. This
is the reason why we adopt the stroke matching
algorithm [4]. By using the algorithm, we can ob-
tain stroke correspondence automatically. Addi-
tionally, in case the correspondence is incorrect,
we give animators the opportunity to correct the
correspondence manually. If any stroke correspon-
dences are not provided, we apply path similarity
measures [18, 19] for further matching.

– 89–



Vol. 10, No. 3, pp. 87 – 97

First, we obtain pairs of corresponding con-
tour points from the stroke correspondences in
both source and target key-frames. We already
have a correspondence between contour points and
skeleton paths in the skeleton extraction process.
Therefore, the skeleton path correspondences can
be obtained from the contour point correspon-
dences through the contour-skeleton correspon-
dences (see Figure 2).

The details of the skeleton path matching algo-
rithm are described as follows. For each pair of
corresponding contour points, the graph end path
corresponding to a contour point of the pair votes
to the graph end path which is corresponding to
target contour point, and vice versa. The voting
result determines which end node of the skeleton
graph at the target key-frame to be corresponding
to an end node. The most voted end node becomes
the most likely candidate for the end node. If the
most likely candidate of the end node also chooses
the end node as first candidate, these end nodes are
corresponding to each other. If the most likely can-
didate is already corresponding to other end node,
the end node chooses another candidate from end
nodes which choose the end node as first candidate
by using the path similarity measure [19]. If an end
node is not corresponding to any other end node,
the graph path of the end node is removed from
the skeleton graph.

Figure 3 depicts the end path matching. Fig-
ure 3(a) show two examples of pairs of correspond-
ing contour point and their corresponding graph
end paths. The matched pairs of graph end paths
are shown by different colors in Figure 3(b). An
redundant end path is removed from the skeleton
of key-frame 2.

After graph end correspondences are obtained,
these skeleton graphs are reconstructed to have the
same topology. As shown in Figure 4, each junction
node can obtain the same number of children as the
corresponding junction node by this reconstruction
process. If children of the junction node are not
corresponding to the certain junction node in the
other graph, the children of the junction node are
merged to the most recent common ancestor. The
index of each node is also revised.

Thus, a linkage which has a tree structure from
the matched skeleton graphs is constructed. We
adapt the dominant point detection algorithm [20]
to each skeleton path for choosing the same number
of joints.

Figure 5 represents examples of the linkage struc-
tures, which can be applied for our simulation
model. These are key-frames before (Source) and
after (Target) hand flipping motion. The same
linkage structures are constructed by above pro-
cedures.

Fig. 2: Correspondences between skeleton
paths are obtained from contour point corre-
spondences.

(a)

(b)

Fig. 3: The end path matching algorithm. The
matching result is depicted by colors. An end
path (dot line in the right skeleton) is removed.

Fig. 4: The graph reconstruction algorithm.
Pairs of node with the same numbers are cor-
responding to each other. The lower row shows
the result of graphs with the same topology.

– 90–



Vol. 10, No. 3, pp. 87 – 97

(a) Key-frame 1 (b) Key-frame 2

(c) Key-frame 1 (d) Key-frame 2

Fig. 5: Example of a skeleton linkage construc-
tion.

4 In-between Creation

Our in-between creation method generates a mo-
tion transition from the initial state of the skeleton
at the source key-frame to the final state of the
skeleton at the target key-frame. A state of skele-
ton consists of 3 components; the angles of the ro-
tational joints, the lengths of the links, and the
position and rotation of the root.

For generating a motion of the linkage structure,
the motion of the root node is defined by an anima-
tor. The translation of the root is input by drawing
a motion path, and the rotation of the root is spec-
ified by the axis and the angle.

Our simulation model based on multi-body dy-
namics [21] is applied to the constructed linkage
structure. Our model can generate in-betweens
which converge on the target joint angles by ap-
plying the convergence force [5]. And then, the
lengths of each link are changed toward the final
link lengths by linear interpolation during the sim-
ulation. In this way, we achieve creation of motion
transition for the skeleton between key-frames.

After creating the motion transitions, an anima-
tor chooses desired frames as in-between frame. For
user assistance, our system automatically selects
feature frames as candidates of in-between frames
by using the signature frame selection algorithm
proposed by Yasuda et al. [22].

A screen shot of our application is shown in Fig-
ure 6. In this figure, the left window is main can-
vas. An animator draws input strokes and a motion

Fig. 6: A screen shot of our application. The
left window is the drawing canvas. Blue line is
the motion path in the window. The right win-
dow shows the result of in-betweens, the green
curves are input key-frames and the blue curve
is one of in-betweens.

path, and then the right window shows the result
of in-betweens.

4.1 Simulation model

We consider that the shapes of all links are cylin-
ders which have a constant radius and the mass of
each link is proportional to the length of the link.
In our simulation model, every joint are rotational
joints and each joint i has the spring coefficient Ki

s

and the damping coefficient Ki
d. The torque ex-

erted on the joint i is calculated as follows.

τi = −Ki
s

(
θi − θrest

i

)
−Ki

dωi (1)

where, θi and θrest
i are the current and rest an-

gle of the joint, respectively, and ωi is the angular
velocity of the joint.

We apply the soft joint constraint [23] to a joint
angle to limit the range of motion. When the joint
angle exceeds the range of motion, the constraint
torque is generated as a virtual spring and damp-
ing. The torque generated by the spring and the
damping at a joint i is calculated as follows.

τ const
i =

{ −Kv
s (θi − θHi

i )−Kv
d ωi if θi > θHi

i
−Kv

s (θi − θLow
i )−Kv

d ωi if θi < θLow
i

0 otherwise
(2)

where θi is the current angle of the joint, and the
range of motion is from θLow

i to θHi
i , and Kv

s , Kv
d

are the coefficients of the virtual constraint spring
and damping force, respectively. Animators can
adjust these joint parameters interactively using
GUI in our application.

Our simulation model can take effects of gravity
and wind into account. When a wind is blowing,
the external force exerted by the wind on a link is
calculated by Eq. (3) [24],

F wind = ρWLV 2 sin φ (3)

– 91–



Vol. 10, No. 3, pp. 87 – 97

where ρ is the density of air, W is the width of
the link, L is the length of the link, V is the wind
velocity, φ is the angle between the link and the
wind direction. In fact, animators can specify the
velocity and direction of the wind.

For the convergence of the motion onto the tar-
get state, we apply the joint torque toward the tar-
get angle at each joint when the position of the
joint is close to the position at the target state.
The torque which is called the convergence torque
at a joint i is defined as follows.

τ conv
i = Kconv(θtarget

i − θi) (4)

For creating more natural motion, the coefficient
Kconv can be increased gradually.

When the trajectory of the base of the linkage
is given by an animator, the spatial velocities and
spatial acceleration of the base are calculated and
the forward dynamics simulation is executed. The
Featherstone’s algorithm [21] is applied to our sim-
ulation model to solve the forward dynamics prob-
lem.

4.2 2D motion transition

The outlines of an object during in-between
frames are generated according to the motion tran-
sition of the skeleton. If the transition for the root
of the skeleton linkage does not contain any Z com-
ponent; the motion can be achieved only in the
2D X-Y plane. In this case, we can use the 2D
mesh manipulation method for deforming the in-
put strokes such as the method Igarashi et al. [6]
proposed.

Firstly, we construct a triangle mesh from the
points on the input strokes and the joint positions
by using Delaunay triangulation [25]. To increase
the mesh density, we add a number of vertices gen-
erated in a grid pattern to the mesh. By using
the mesh vertices from the joint positions as con-
trol points, the positions of the rest of vertices are
calculated by a mesh manipulation method. This
manipulation process should be very fast because
the calculations of inverse matrix are completed in
the pre-process.

Even if all joints are located on the same posi-
tions as the target at the final frame, the deformed
vertices does not always lie on the same positions
as the target frame. Therefore, we also construct
another triangle mesh from the target key-frame
and deform it. Finally, we obtain strokes during
in-between frames by blending these two deformed
mesh.

4.3 3D motion transition

Animators can input an axis of rotation instead
of a motion path. To achieve in-betweens with ro-

Fig. 7: Depth creation for 3D mesh construc-
tion.

tations, we need to have a 3D structure. By inflat-
ing 2D mesh based on the input outlines, we can
obtain the 3D structure for in-between frames.

Pixels of the rasterized image are converted into
vertices of 3D triangle mesh. The depth value of
each vertex is calculated by using the distance from
the pixel to the edge of the shape. When the skele-
ton linkage is extracted, the distances are calcu-
lated automatically. Animators can control the
shape of the 3D structure by adjusting a depth
function. To provide a simple depth control to
animators, the depth is defined by the following
function.

z(d) = d0 ∗
√

1− (1−max(1, d/d0))2 (5)

The shape for the cross section of a 3D structure
created by this function is a capsule shape (Fig-
ure 7). Chosen a reference joint by animators, the
radius of arc d0 is set to the distance at the refer-
ence joint.

Figure 8 shows a result of the shape inflation.
The reference joint for inflation is circle, and the
thickness of the 3D geometry is defined by the di-
ameter of the circle. Figure 9(b) also shows a 3D
geometry created from Figure 9(a). To create the
3D mesh shown in Figure 9(b), two circled joints in
Figure 9(a) are used as the reference joints. There-
fore, the thickness of the hand and the thickness of
the arm are different.

The 3D mesh is partitioned into individual parts
corresponding to each link of the skeleton linkage.
First, the mesh is divided by the lines perpendicu-
lar to the direction of each link, and the triangles in
the divided part is associated with the link. Next,
for triangles associated with more than one link or
not associated with any links, these triangles are
associated with the nearest link. And then, each
associated region is expanded to overlap other re-
gions. Figure 9(c) shows an example of the 3D
mesh sub-division.

The subdivided 3D mesh is deformed according
to the motion of its skeleton by traditional defor-
mation techniques such as Skeleton Subspace De-
formation (SSD) [26].

Finally, the contours from a viewpoint for the
created 3D mesh are projected onto the 2D plane
during in-between frames. In fact, the deformed
3D mesh based on the simulation is illustrated as
2D line drawings so the output image sequence
can be utilized in 2D animation productions. In

– 92–



Vol. 10, No. 3, pp. 87 – 97

(a) (b) (c) (d)

Fig. 8: 3D mesh construction for a hand model.
(a) is a skeleton linkage of input drawing. (b),
(c) and (d) are the created 3D mesh from dif-
ferent viewpoints.

(a) Skeleton
linkage

(b) Created
3D mesh

(c) Subdi-
vided mesh

Fig. 9: 3D mesh sub-divisions.

our method, we adopt the Photic Extremum Lines
(PEL) [7] for extracting the contours.

5 Result

5.1 Results of 2D motion transi-

tion

Figure 10 shows a result of in-between creation
of windblown grasses, and Figure 11 shows a hand
with a motion of fingers. In these figures, the two
hand-drawn key-frames and the extracted skeleton
linkages are shown on the top of the row, and 2
key-frames and 6 in-between frames are shown in
the following two rows. The skeleton linkage of the
first key-frame is moved toward the second key-
frame. Our algorithm can generate outlines which
transform smoothly during in-between frames.

Figure 12 shows hair strands of a character while
she is jumping. In the result, only a part of hairs is
illustrated. The source and the target key-frames
are the same frame, and the hair motion during in-
between frames is created by our simulation model
based on the movement on the trajectory of the
character’s head root point. The hair strands dur-
ing its falling are spreading by a wind effect.

(a) Key-frame 1 (b) Key-frame 2

Fig. 10: Result of in-betweens for wind-blown
grasses.

As shown in those figures, our method can
handle more complex objects than the previous
method [5] by solving the inconsistency of the skele-
ton linkage.

5.2 Results of 3D motion transi-

tion

Figure 13 shows the resulting in-between frames
from a hand flipping motion. Figure 13(a) is a
source key-frame and (o) is a target key-frame
drawn by an animator. The axis of rotation and
the rotation angles are also configured by the ani-
mator. To create finger motion, the animator de-
fines several joints on fingers as flexion-extension
joints and the rest angles of the flexion joints are
configured.

In this result, the convergence forces are
switched off during the first half of rotation by the
animator’s configuration. Therefore, the flexion-
extension joints of the hand are moving toward and
the rest angle (25 degrees of flexion) by the torsion
spring of the joints. During the second half of ro-
tation, the flexion joints are moving by the conver-
gence forces toward the target angle (0 degrees of
flexion).

We demonstrate another example “arm flipping”
of in-between creation in Figure 14.

As a result, we have achieved the in-between cre-
ation such as flipping motion, which has not been
created by the previous in-between creation meth-
ods.

– 93–



Vol. 10, No. 3, pp. 87 – 97

(a) Key-frame 1 (b) Key-frame 2

Fig. 11: Result of in-betweens for a hand with
motion of fingers.

Fig. 12: Result of in-betweens for hair strands
in the case of character’s jumping.

6 Conclusion

We have discussed the improvement in efficiency
of 2D animation production. Basically, this pa-
per describes a method to create in-between frames
from two key-frames drawn by an animator. The
skeleton linkage in each key-frame is automatically
constructed based on the drawn outlines. The
pair of skeleton linkages extracted from the source
key-frame and the target key-frame must be corre-
sponding mutually. We have solved this problem
by using stroke correspondences or path similarity.
The two skeleton linkages are reconstructed accord-
ing to the end path correspondences. For generat-
ing a motion sequence between two key-frames, we
have successfully provided the in-between creation
with our simulation model starting from the source
key-frame toward the target key-frame.

Unlike the previous work, our proposed method
can handle in-betweens containing a 3D rotation.
To achieve this, we construct a 3D structure by
inflating the input 2D shape. The constructed 3D
mesh is subdivided automatically so that generic
types of traditional deformation techniques can be
applied. Finally, the contours from the view-point
for the created 3D structure are projected onto the
2D plane during in-between frames.

In this way, we have achieved in-between cre-
ation containing spatial rotation. Our 2D/3D hy-
brid method can be applied to scenes more widely
than the previous work.

However, there are still several future enhance-
ments. Our simulation-based in-between creation
requires several parameters such as the spring and
damping coefficients of each joint, the strength of
gravity and wind, and the velocity of the base of
the linkage. If undesired motion is generated, ani-
mators have to adjust these parameters. Therefore,
an automatic parameter adjustment is required to
improve the usability of our application.

In addition, if animators want to construct more
complex 3D structure, a sketch-based 3D modeling
algorithm such as [27, 28, 29] shall be useful.

For creating complicated scenes, animators have
to extract strokes from a composing object be-
fore applying our simulation model. If the step
is automated, the effectiveness of the process of in-
between creation shall be more improved.

Acknowledgment

This work has been supported by the National
Research Foundation grant, which is administered
by the Media Development Authority Interactive
Digital Media Programme Office, MDA (IDMPO).

– 94–



Vol. 10, No. 3, pp. 87 – 97

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 13: Result of in-betweens for hand flipping.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 14: Result of in-betweens for arm flipping.

– 95–



Vol. 10, No. 3, pp. 87 – 97

References

[1] John Lasseter. Principle of traditional anima-
tion applied to 3D computer animation. Com-
puter Graphics, 21(4):35–44, 1987.

[2] Quan Chen. Computer-assisted inbetween gen-
eration for cel animation. PhD thesis, School
of Computer Engineering, Nanyang Techno-
logical University, 2008.

[3] Xiang Bai and Longin Jan Latecki. Discrete
skeleton evolution. In Proc. of EMMCVPR
2007, LNCS4679, pages 362–374, 2007.

[4] Dongquan Liu, Quan Chen, Jun Yu, Huiqin
Gu, Dacheng Tao, and Hock-Soon Seah.
Stroke correspondence construction for vector
based 2d animation inbetweening. In Proc. of
Computer Graphics International 2010, 2010.

[5] Eiji Sugisaki, Fumihito Kyota, Hock Soon
Seah, and Masayuki Nakajima. Simulating-
based in-between creation for CACAni sys-
tem. In SIGGRAPH Asia 2009 Sketches,
2009.

[6] Takeo Igarashi, Tomer Moscovich, and
John F. Hughes. As-rigid-as-possible shape
manipulation. ACM Trans. on Computer
Graphics, 24(3):1134–1141, 2005.

[7] Xuexiang Xie, Ying He, Feng Tian, Hock-
Soon Seah, Xianfeng Gu, and Hong Qin. An
effective illustrative visualization framework
based on photic extremum lines (PELs). IEEE
Trans. on Visualization and Computer Graph-
ics, 13(6):1328–1335, 2007.

[8] Andrew Witkin and Michael Kass. Spacetime
constraints. In Proc. of SIGGRAPH ’88, pages
159–168, 1988.

[9] Ken Anjyo, Michael Arias, Youichi Horry, and
Yoshiyuki Momose. Digital cel animation in
Japan. In SIGGRAPH 2000 Conf. Abstracts
and Applications, pages 115–117. ACM Press,
2000.

[10] Jan Krikke. Computer graphics advances the
art of anime. IEEE Computer Graphics and
Applications, 26(3):14–19, 2006.

[11] Paul Rademacher. View-dependent geometry.
In Proc. of SIGGRAPH ’99, pages 439–446,
1999.

[12] Quan Chen, Feng Tian, Hock Soon Seah, and
Jie Qiu. Motion estimation based on segmen-
tation for key-frame inbetweening. In Proc. of
Int’l Workshop on Advanced Imaging Technol-
ogy, pages 12–17, 2006.

[13] Kun Zhou, Jin Huang, John Snyder, Xinguo
Liu, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Large mesh deformation using
the volumetric graph Laplacian. ACM Trans.
on Computer Graphics, 24(3):496–503, 2005.

[14] Ryo Kondo, Takashi Kanai, and Ken-ichi An-
jyo. Directable animation of elastic objects.
In Proc. of ACM SIGGRAPH / Eurograph-
ics Symposium on Computer Animation 2005,
pages 127–134, 2005.

[15] Fumihito Kyota, Eiji Sugisaki, Hock Soon
Seah, and Masayuki Nakajima. An automatic
in-between creation based on hand-drawn key
frames. In Proc. of 2010 NICOGRAPH Inter-
natinal Conference, pages S3–4, 2010.

[16] Xiang Bai, Longin Jan Latecki, and Wenyu
Liu. Skeleton pruning by contour partitioning
with discrete curve evolution. IEEE Trans.
on Pattern Analysis and Machine Intelligence,
19(3):449–462, 2007.

[17] Donald G. Bailey. An efficient Euclidean dis-
tance transform. In Proc. of the Int’l Work-
shop on Combinatorial Image Analysis, LNCS
3322, pages 384–408, 2004.

[18] Xiang Bai and Longin Jan Latecki. Path sim-
ilarity skeleton graph matching. IEEE Trans.
on Pattern Analysis and Machine Intelligence,
30(7):1282–1292, 2008.

[19] Yao Xu, Bo Wang, Wenyu Liu, and Xiang
Bai. Skeleton graph matching based on crit-
ical points using path similarity. In Proc.
of 9th Asian Conference on Computer Vision
(ACCV2009), pages 456–465, 2009.

[20] Thanh Phuong Nguyen and Isabelle Debled-
Rennesson. Fast and robust dominant point
detection on digital curves. In Proc. of 2009
IEEE International Conference on Image Pro-
cessing (ICIP2009), pages 953–956, 2009.

[21] Roy Featherstone. The calculation of robot
dynamics using articulated body inertias.
International Journal of Robotics Research,
2(1):13–30, 1983.

[22] Hiroshi Yasuda, Ryota Kaihara, Suguru Saito,
and Masayuki Nakajima. Motion belts: Vi-
sualization of human motion data on a time-
line. IEICE Trans. on Information and Sys-
tems, E91-D(4):1159–1167, 2008.

[23] Brad Farris and Khaled El-Sawi. Physics-
based robotic simulation using joint con-
straint. In Proc. of the 13th Annual Confer-
ence on Industry and Management Systems,
pages 53–58, 2007.

[24] Changbo Wang, Zhangye Wang, Qi Zhou,
Chengfang Song, Yu Guan, and Qunsheng
Peng. Dynamic modeling and rendering of
grass wagging in wind. Computer Animation
and Virtual Worlds, 16(3-4):377–389, 2005.

[25] Der-Tsai Lee and Bruce J. Schachter.
Two algorithms for constructing a delau-
nay triangulation. International Journal
of Parallel Programming, 9:219–242, 1980.
10.1007/BF00977785.

– 96–



Vol. 10, No. 3, pp. 87 – 97

[26] J. P. Lewis, Matt Cordner, and Nickson Fong.
Pose space deformation: A unified approach to
shape interpolation and skeleton-driven defor-
mation. In Proc. of SIGGRAPH 2000, pages
165–172, 2000.

[27] Ryan Schmidt, Brian M. Wyvill, Mario Costa
Sousa, and Joaquim A. Jorge. ShapeShop:
Sketch-based solid modeling with BlobTrees.
In 2nd Eurographics Workshop on Sketch-
Based Interfaces and Modeling, pages 53–62,
2005.

[28] Olga A. Karpenko and John F. Hughes.
Smoothsketch: 3d free-form shapes from com-
plex sketches. ACM Trans. Graph., 25:589–
598, July 2006.

[29] Alexis Andre, Suguru Saito, and Masayuki
Nakajima. Single-view sketch based surface
modeling. IEICE Trans. on Information and
Systems, E92-D(6):1304–1311, 2009.

Fumihito Kyota

Fumihito Kyota received his MS degree in Com-
puter Science and Engineering from Tokyo Insti-
tute of Technology, Japan in 2005 and BS de-
gree in Electrical and Electronics Engineering from
Yokohama National University, Japan in 2003. He
has been associated with Nanyang Technological
University (NTU), Singapore as research assistant
from 2009 to 2010. He is currently a Ph.D student
in Tokyo Institute of Technology, Japan. His re-
search interests include but are not limited to CG
and cartoon animation, computer vision and au-
tonomous agents.

Eiji Sugisaki

Eiji Sugisaki is currently an Executive Producer
and a Technical Director of Digital Magic Ltd.,
China. He has received a Ph.D degree from Waseda
University, Japan and completed his time as a post-
doc at Nanyang Technological University, Singa-
pore. In addition, he used to be a visiting scholar
at University of Illinois at Urbana Champaign, U.S.
His research interests include non-photorealistic
expressions, physics based hair dynamics, Data-

Driven method to create a human motion, and Im-
age Processing.

Hock Soon Seah

Hock Soon Seah is currently a Professor and Di-
rector of the gameLAB at the School of Computer
Engineering (SCE) at Nanyang Technological Uni-
versity (NTU), Singapore. Concurrently, he is also
a Co-Director of the NTU Institute for Media In-
novation. Seah is the inventor and principal inves-
tigator of the Computer Assisted Cel Animation
(CACAni) research on innovative drawing and an-
imation software for traditional animation.

Masayuki Nakajima

Masayuki Nakajima received the BEE, MS, and
DrEng degrees from Tokyo Institute of Technology,
Japan, in 1969, 1971, and 1975, respectively. Since
1975, he has been with the Department of Imaging
Science and Engineering, Tokyo Institute of Tech-
nology, Yokohama, Japan. He is now a professor
in the Department of Computer Science, Faculty
of Graduate School of Information Science and En-
gineering, Tokyo Institute of Technology, Japan.
His fields of interest are computer graphics, pattern
recognition, image processing, and virtual reality.
He published 20 books, more than 350 papers, and
150 international conference papers.

– 97–


