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Abstract

Trees are important in synthesizing outdoor scenes. One of the features of trees is their complicated
shape composed of many leaves, branches and trunks. In many non-photorealistic rendering methods,
abstract shapes are required to convey the information of shape to the viewer.

Luft and Deussen proposed a method that extracts abstract shapes from tree polygon models, which
adopted isotropic density functions for leaves. The leaves are generally flat, however, so that their method
tends to extract the abstract shape with dilation. This paper proposes an abstract shape extraction method
that utilizes anisotropic density functions to capture anisotropic structures of leaves.

The proposed method was implemented and the several types of tree models were tested. This paper also
introduces metrics to evaluate dilation and erosion of extracted shapes. The result shows that the dilation
and erosion can be controlled by choosing the parameters, so that users can extract abstract shapes in
several styles according to their preference.
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1 Introduction

Plants, especially trees, are very familiar to us
and they have been playing important roles in
many computer-synthesized scenes. One of the fea-
tures of trees is their complicated shape composed
of many leaves, branches and trunks.

In general, abstraction is a key component in
non-photorealistic rendering (NPR) [1], and thus,
it is very important to O allow users to control
abstract shapes to reflect their preference. Ab-
straction can be performed in image-space [2, 3]
as well as object-space, 0 but shape abstraction
in object-space is more advantageous for anima-
tion applications to preserve temporal coherence.
Shape abstraction methods are O often special-
ized to a ceratin domain of object types and ren-
dering styles. Kawalski proposed a stroke-based
method that procedurally reproduces complexities
O on simple object surfaces using graftals for il-
lustrative tree rendering [4]. Noble proposed a
NURBS-based method cartoon hair animation [5],
and Mehra proposed a method that abstracts arti-
ficial objects.

Luft and Deussen [7, 8] proposed a method that
extracts abstract shapes from tree polygon models.
They adopted isotropic functions that only depend
on the distance from the leaf vertices to the point.
An abstract shape is extracted as implicit surfaces
on which the sum of the density functions equals to
a given threshold. This method works well in those
regions where leaves are located sparsely. How-
ever, the extracted implicit surfaces tend to be too
bloated in case that many leaves are localized. This
happens because the method fails to capture the
flat shape of leaves due to their use of the isotropic
density function.

When users try to reduce bloat in dense re-
gions, satisfactory shapes in sparse regions may
shrink. Therefore, better user controls are required
in shape abstraction for watercolor tree rendering.

This paper proposes an abstract shape extrac-
tion method that utilizes anisotropic density func-
tions to capture anisotropic structures of leaves.
The proposed method modulates function parame-
ters to make the density function more isotropic in
sparse regions because it is known that the isotropic
functions give successful result in those regions.
On the other hand, in regions where the leaves
are placed densely, the method employs functions
with more anisotropic features in order to retain
the shapes of leaves. In this way, the proposed
method provides better controls in shape abstrac-
tion for tree watercolor rendering. The extracted
shapes can be also used for photorealistic render-
ing, as mentiond in [9].

The anisotropic density function is defined in a
local coordinate system centered at the vertex on a

leaf. The vertex normal direction is used to define
the first axis, and, the other two axes are defined to
span the tangent plane at the vertex. The function
is controlled by three parameters along each axis,
so that the distribution of the density function be-
comes flatter like a shape of leaf. Our method con-
trols the parameters according to the leaf density in
such a way that the extracted implicit surface could
preserve the shapes of leaves where the leaves are
located densely. Users can also manually adjust the
parameters to control the abstract shape according
to their preference, ranging from the sparse look to
the close-packed one.

The proposed method was implemented and sev-
eral types of tree models were tested. It was found
that the extracted abstract shapes were favorable
in most cases: the resulting abstract shape did not
have too bloated region or too thin region. It was
also demonstrated that users can extract an ab-
stract shape of a tree from the various styles in-
cluding a skinny and dilated look with the proposed
method.

The remainder of this paper is organized as fol-
lows. Section 2 describes the previous work by
Luft and Deussen. Subsequently, we describe our
method in Section 3, and Section 4 describes how
to control the abstract shape by the parameters.
Some NPR results of the abstract shape are shown
in Section 5. Finally, Section 6 concludes the pa-
per.

2 Previous Method

Luft and Deussen [8] utilized the isotropic den-
sity functions Dj, which only depend on the dis-
tance from the vertex ¢; on a leaf for extracting
an abstract shape. The density value D;(p) at the
point p is defined as the following equation.

Dj(p) = 1= (%) (Ilp = ¢ill £ Ra)

0 (lp = ¢ill > R1)
(1)
This equation shows that the density value be-
comes zero when the distance from the vertex to
the point is larger than its influencing bound R;.
The implicit function N (p) is defined as the
sum of these density functions:

N p) = D;(p) T, (2)

where T' is a threshold. The abstract shape of a
tree is determined as the implicit surface where the
value of the implicit function becomes zero. Figure
1 shows an example of the implicit surface when
two density functions are placed side by side.
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Figure 1: Example of the implicit surface gen-

erated by two density functions.

(b) By Luft and Deussen

(a) Geometry

Figure 2: The abstract shape in the low leaf

density region.

We have implemented the method and applied to
several models of trees. Figure 2(a) shows a part
of the models, and the extracted abstract shape is
shown in Figure 2(b). This result suggests that
the method can well extract the abstract shape in
the low leaf demnsity region. However, when the
method is applied to another part of the model
shown in Figure 3(a), the abstract shape is bloated
as shown in Figure 3(b). As shown in the example,
the method tends to generate bloated shapes in the
low leaf density region. The major reason is that
the isotropic density functions fail in capturing flat
shapes of leaves.

In addition to this leaf level anisotropicity, there
is the branch level anisotropicity, which is the
anisotropicity in a sense that the leaves are dis-
tributed along with branches. We consider that
the previous method reflects the branch level
anisotropicity because it is automatically captured
by density functions are summed over all leaves.
Therefore, we focus on the leaf level anisotropic-
ity. If we ignore the fact that a leaf is not spheral,

(a) Geometry (b) Isotropic (c) Anisotropic

Figure 3: The abstract shape where the high
leaf density region. (a) Original geometry. (b)
Extracted by isotropic density functions. (c)
Extracted by anisotropic density functions

(a) Texture

(b) Leaf mesh

Figure 5: The influencing bounds of R, and
R,.

dilation is found as shown in Figure 3. In this pa-
per, the term anisotropicity refers to the leaf level
characteristic of leaves.

3 Proposed Method

3.1

We propose a method that deals with the di-
rectivity of leaf shapes by introducing anisotropic
density functions. Our anisotropic density function
is defined in a local coordinate system whose origin
is the leaf vertex c; as shown in Figure 4. Normal
direction n; at the vertex c; is used as one of the
axes, and the other two axes, u; and v;, are defined

Anisotropic Density Function

on the leaf surface. The density function D](a)(p)
is defined in the local coordinate (prn,pu,pv) as fol-

lows:
s - () () () o
1)
1)

D) = {(1—§(p)) EE%; ()

In these equations, the parameters R,,, R, and
R, represent the influencing bounds in n;, u; and
v; axes, respectively. Ry, R,, u; axis and v; have
to be determined based on the leaf shape. The
isosurface of a single anisotropic density function
derives an ellipse on a leaf plane. So we approxi-
mate a leaf shape by an ellipse as shown in Figure
5(a). The major axis of the ellipse is used as wu;
axis, the minor axis as v; axis, the major diameter
as R, and the minor diameter as R,.

— 50—



The Journal of the Society for Art and Science Vol. 10, No. 2, pp. 48 — 57

Figure 6: Result of anisotropicity control. (a)
Original geometry. (b) Extracted by constant

anisotropicity.  (c¢) Extracted by controlled

anisotropicity.

In our implementation, approximated ellipses are
set in textures that are mapped to the leaf meshes.
The major and minor diameters are defined on the
texture plane. The method calculates the points U;
and Us that correspond to the major diameter and
V1 and V> that correspond to the minor diameter.
By mapping the texture, the point w1, u2, v1 and
vy are calculated as shown in Figure 5(b). The u;
axis is given by u; —u2 and the v; axis by v1 —va.
The influencing bounds are defined as the following
equations:

R, = ||’LL1 _u2||/27 (5)
R, llvr — v2||/2. (6)

If u; axis and v; axis are not orthogonal, they have
to be orthogonalized, for example, by the Gram-
Schmidt orthonormalization.

Since the leaf shape is flat, it is not natural that
the influencing bound R,, of normal direction is set
larger than R, or R,. Therefore, R, is defined by
parameter Agr as:

R, =Ar X Ry, (7)

for0 < Ar < 1.

3.2 Anisotropicity Control Based
On Leaf Density

The anisotropic density functions are applied to
the geometry shown in Figure 3(a). As a result, the
bloated shapes are eased in the high leaf density
region as shown in Figure 3(c). However, when
the anisotropic density functions are applied to the
model shown in Figure 6(a), the extracted shape
gives poor result as shown in Figure 6(b), where
the method fails to capture the shape in the central
region. This suggests that naive introduction of the
anisotropic density functions causes artifacts that
the extracted shape is not captured well in the low
leaf density region.

RE(C)

R ax

N (””(Ll )

Figure 7: Controlling R\ by the leaf density.

i

In order to solve this problem, we introduce the
method that controls the anisotropicity in such a
way that it becomes more anisotropic in the high
leaf density region and it becomes more isotropic
in the low leaf density region. The anisotropicity
is represented by the influencing bounds

R, R and R which correspond to the
bounds for u, v and n axes, respectively. We use
REC) to denote one of the three influencing bounds
in the following explanation.

REC) is calculated for ¢ € {u,v,n} as follows:

Rinas (J\EFis;’)(Cj) < p1)
(Ri = Runaa)(N"""(c;) — p1)
REC) — Rmaz + P2 — pl
(p1 < (N'*2(¢;) < p2)
R; (N (c;) = pa).
(8)

It means that REC) is controlled by the value of im-
plicit function at the origin of the local coordinate
system c¢;, N (c;), is computed by Equations
(2) as illustrated in Figure 7. In order to make
the density function isotropic in the low leaf den-
sity region, the influencing bound is set to Rmax
when N(*°)(¢;) is less than a threshold p;. On the
other hand, in order to make the density function
anisotropic in the high leaf density region, the in-
fluencing bound is calculated by Equations (5), (6)
and (7). The influencing bound between p; and p2
is calculated by the linear interpolation. p; and p»
are calculated by the mean m and the variance o>
of the implicit function values at leaf vertices, v;
(1<i<N):

m = Z N (1) /N,

o2 = Z(N(iso)(vi) —m)’/N,

pr = m+aio’ 9)
P2 = m+ a202, (10)

In our current implementation, a; is set to 0
and s is set to 2. Figure 6(c) shows the results
from the controlled anisotropic density functions.
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Vertices

h 4

1. Set Grids

A 4
2. Calculate the density distribution

by the isotropic density functions

h 4
3. Calculate ) and p,

by the density distribution

h 4

4. Calculate Rp, Ry and Ry

h 4
5. Interpolate linearly the influencing

bound for each direction

h 4

6. Calculate the density field

h 4

7. Polygonize the overall shape

by the marching cube method

Figure 8: Algorithm.

Compared with Figure 6(b), the neutralization of
erosion at the central region is observed.

3.3 Algorithm

Figure 8 shows the procedure of abstract shape
extraction by the proposed method. In step 1, the
method calculates the bounding box of the tree
model and generates three-dimensional grids. In
step 2, the method calculates N (p;) at the cell
vertex p;. Then, by interpolating N(’vs")(pi)7 the
method calculates N(*?)(¢;) that is the value of
the implicit function at the leaf vertex ¢;. In step
3, the method calculates the mean and variance of
the implicit function at the leaf vertices, and then,
determines p; and p» by Equations (9) and (10).
In step 4, R,, R, and R, at each vertex c; are
calculated by Equations (5), (6) and (7). In step
5, the influencing bounds REC) of each vertex ¢;
are computed using Equation (8). In step 6, the
method evaluates the value of the implicit function
at the cell vertex p; using the anisotropic density
function D](-a) in the influencing bounds R, Fi-
nally, the implicit function is polygonized by the
marching cube method [10].

—— implicit surface

L. ol “9e b [ & Ddﬂatedm
° @
- ° e leaf vertex
oV |

e off-site vertex

Figure 9: Dilated voxels and off-site vertices.

4 Experiments

In this section, we evaluate how well the pro-
posed method can control dilation and erosion of
extracted shapes. We introduce two metrics, the
number of dilated vozels and off-site vertices, to
quantitatively measure the effects. Figure 9 illus-
trates these metrics.

Dilated voxel A voxel can be classified into three
categories, these are inside/on/outside the im-
plicit surfaces. An extracted shape is orga-
nized by the voxels of the former two cate-
gories, but some voxels do not contain any leaf
vertices. These voxels do not contain the orig-
inal polygon model, but appears in the result-
ing extracted shape. We define these voxels as
dilated vozels. The number of dilated voxels
can be considered as a metric to measure the
extent of dilation.

Off-site vertex On the contrary, some leaf ver-
tices in the original model are not included in
the extracted shape. It is undesirable that lo-
cations indicated by the original vertices do
not remain in the resulting shape, so they can
be regarded as a sign of erosion. We define
these vertices as off-site vertices. The number
of off-site vertices gives a measure to examine
how much the shape are shrinked.

4.1 Anisotropicity Control

We extract abstract from the tree model as
shown in Figure 10 (52648 vertices) by the three
method:

e The method by Luft and Deussen that uses
isotropic density functions. (L&D)

e The proposed method that uses anisotropic
density functions without the anisotropicity
control. (UNCTRLED)

e The proposed that uses anisotropic density
functions with the anisotropicity control based
on leaf density described in Section 3.2.
(CTRLED)
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Figure 10: Tree model used in evaluation.

The voxel resolution used in this evaluation is 64 x
64 x 64.

We count the number of dilated voxel and off-site
vertex for three extracted shapes. Table 1 shows
the result. The number of dilated voxels is the
smallest when we use UNCTRLED, but the num-
ber of off-site vertices is largest. The number of
off-site vertices is smallest when we use L&D, but
the number of dilated voxels is largest.

The abstract shape by CTRLED succeeds in
damping the number of dilated voxels compared
with L&D and the number of off-site vertices com-
pared with UNCTRLED. This demonstrates that
the proposed method is capable to control abstrac-
tion and to extract intermediate shapes. In the
next section, we will discuss more details of the
control issues.

4.2 Parameter Effects

The method described in the previous section
includes three parameters that users can choose:

e T a threshold to extract the implicit surface
from the density field

® Ryq.: the influencing region of a density func-
tion where the leaf density is low

e \g: the flatness of the density function

In this section, we discuss the behavior of extracted
shape according to the change of the parameters.
Figure 11 shows the variation of the number of
dilated voxels and the number of off-site vertices
according to the change of the threshold 7. As
T increases, the number of dilated voxels becomes
smaller, but the number of off-site vertices becomes
larger. This means that the dilation and erosion of

16000

12000

8000

S30I3A /S|OXOA JO #

4000

15 2 25
T

| ODilation Voxel ~BOff-site Vertex |

Figure 11: Number of dilated voxels and off-
site vertices according to change of Threshold
T.
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Figure 13: Number of dilated voxels and off-
site vertices according to change of Parameter
Rmaz-

the abstract shape cannot be controlled indepen-
dently by T'. Figure 12 show the effects of changing
the threshold T'.

The parameter R,,.. also influences the ex-
tracted shape. Figure 13 shows the same metrics
as Figure 11 when R,.q. varies. As Ri.q. increases,
the change of the number of off-site vertices is re-
pressed compared to Figure 11, but dilated voxels
increases. Namely, we can extract the preferable
dilated shape by controlling R,.., while the ero-
sion are eased. If users prefer a fat shape, they can
increase R4, to get the desired shape as shown in
Figure 14.

Figure 15 indicates the variation of the metrics
as Agr changes. Asshown in this graph, the number
of dilation voxels does not dramatically change by
the change of Ar. However, the number of off-site
vertices increases by decreasing Ar. Therefore, the
decrease of Ar controls the magnitude of erosion.
For example, users can make holes where the leaves
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Table 1: The number of dilated voxels and the number of off-site vertices.

Density Function isotropic anisotropic anisotropic
(without anisotropicity control) | (with anisotropicity control)
(L&D) (UNCTRLED) (CTRLED)
The number of dilated voxels 13368 2649 10275
The number of off-site vertices 172 24766 9593
4 25000
g‘ 20000
% 15000
g_ 10000
& so00
0
06 07 08
A
| oilation voxel  BOfsite vertex |

Figure 15: Number of dilated voxels and off-
site vertices according to change of Parameter
AR-

are not so dense if such a shape is desirable. In such
cases, they can decrease Ag, as shown in Figure 16.

5 NPR Results

Some NPR examples are shown in Figure 17.
The images on the left are rendered by Phong shad-
ing and those on the right are rendered by the wa-
ter color shading [8]. The abstract shape in Fig-
ure 17(a) becomes thin by setting Ar small. On
the other hand, the shape in Figure 17(b) becomes
fat by setting Rn... large. Figure 17(c) is the ab-
stract shape by the previous method for compari-
son. As shown in these examples, the method can
extract the shapes that give different impressions
by choosing the parameters.

Table 2 shows the processing time of the previous
method and the proposed method. The processing
time of the proposed method is measured as the
sum of execution time from step 1 to step 7 in Fig-
ure 8. The previous method is composed of the
step 1, 6 and 7. So the proposed method requires

(a) Thin abstract shape.
Ryuw =14, T =20, Ag =0.7)

s

(b) Fat abstract shape.

(Rmaz
£

(c)

=1.6,T7=2.0, g =1.0)

The previous method.
(R; =15, T =1.5)

Figure 17: Rendering results.
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Table 2: Processing time. (CPU: AMD Athlon 64 Processor 3200+ 2.01GHz, Memory: 1.00GB)

Resolution (voxels) 328 64° 1283
Luft and Deussen (sec.) 1.297 | 5.164 | 35.382
The proposed method (sec.) | 2.029 | 7.676 | 41.208

additional execution time to the previous method,
corresponding to the steps 2 through 5.

6 Conclusion

In this paper, we proposed a method that uti-
lizes the anisotropic density functions instead of
the isotropic ones used in the previous method.
The anisotropicity of the density functions are con-
trolled based on leaf density. This anisotropicity
control succeeded in reducing artifacts such as un-
natural dilation and erosion observed in the ab-
stract shapes extracted by the previous method.
In addition, users’ preferences can be reflected in
abstract shape extraction by controlling the param-
eters.

The method cannot extract the abstract shape in
real time because the abstract shape is polygonized
by the marching cube method. It is considered that
the direct rendering of the implicit surface[11] ac-
celerates the algorithm by obviating the polygo-
nization process.

References

[1] Hertzmann, A. 2010. Non-Photorealistic Ren-
dering and the Science of Art. Proceedings
of the Third International Symposium on
Non-Photorealistic Animation and Rendering
(NPAR).

[2] Hertzmann, A. 1998. Painterly rendering with
curved brush strokes of multiple sizes. In Pro-
ceedings of SIGGRAPH 98. pp. 453-460.

[3] Shiraishi, M., Yamaguchi, Y. 2000. An algo-
rithm for automatic paiterly rendering based
on local source image approximation, In
NPAR 2000, pp. 53-58.

[4] Kowalski, M. A., Markosian, L., Northurp, J.
D., Bourdev, L., Loring, R., B., Hughes, J., F.
1999. In Proceedings of SIGGRAPH 99, pp.
433-438.

[5] Noble, P., Tang, W. 2004. Modelling and An-
imating Cartoon Hair with NURBS Surface,

Proceedings of the Computer Graphics Inter-
national 2004, pp. 60-67.

[6] Mehra, R., Zhou, Q., Long, J., Sheffer, A.,
Gooch A., J. Mitra, N., J. 2009. Abstraction
of Man-Made Shapes. ACM Transactions on
Graphics, Vol. 28, No. 5.

[7] Luft, T., Deussen, O. 2005. Interactive water-
color animations. In PG ' 05: Poster Proceed-
ings of the 13th Pacific Conference on Com-
puter Graphics and Applications, 7-9.

[8] Luft, T., Deussen, O. 2006. Real-time water-
color illustrations of plants using a blurred
depth test. In NPAR ' 06: Proceedings of
the 4th international symposium on Non-
photorealistic animation and rendering, 11-20.

[9] Luft, T., Balzer, M., Deussen, O. 2007. Ex-
pressive illumination of foliage based on im-
plicit surfaces. In Proceedings of Eurographics
Workshop on Natural Phenomena (EGWNP).
pp. 71-78.

[10] Lorensen, W. E., AND Cline, H. E. 1987.
Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Com-
puter Graphics 21, 4, 163-169.

[11] Kanamori, Y., ” GPU-based Fast Rendering of
Metaballs,” The 5th Korea-Japan Joint Work-
shop on Computer Graphics, Oct, 2007.

[12] Shiraishi, M., Kamimura, Y. AND Shinya,
M., 2010, Abstract Shape Extraction For
Non-photorealistic Tree Rendering Using
Anisotropic Density Functions, In NICO-
GRAPH International 2010.

Michio Shiraishi

Michio Shiraishi received the PhD degree in arts
and sciences from the University of Tokyo in 2003.
He is a lecturer in the Department of Information
Sciences, Toho University. His current research
interest includes non-photorealistic rendering and
perception of illustrations. He is a member of

— 55—



The Journal of the Society for Art and Science Vol. 10, No. 2, pp. 48 — 57

ACM, IEEE Computer Society, Information Pro-
cessing Society of Japan, Society for Art and Sci-
ence, etc.

Yu Kamimura

Yu Kamimura received the BS degree in science
from Toho University in 2009. He is a graduate
student in Toho University Graduate School of Sci-
ence. His research interest is computer graphics.

Mikio Shinya

Mikio Shinya is currently a Professor at Depart-
ment of Information Science, Toho University. He
received a BSc in 1979, an MS in 1981, and a PhD
in 1990 from Waseda University. He joined NTT
Laboratories in 1981, and moved to Toho Univer-
sity in 2001. He was a visiting scientist at the Uni-
versity of Toronto in 1988-1989. His research inter-
ests include computer graphics and visual science.

— 56—



The Journal of the Society for Art and Science Vol. 10, No. 2, pp. 48 — 57

(b) T = 2.0 ()T =25

Figure 12: The effects of changing the threshold T

(b) Ryas = 1.5 (¢) Rumaz = 1.6

Figure 14: The effects of changing the parameter R, 4.

(a) Ar = 0.6

Figure 16: The effects of changing the parameter Ag.

— 57—



