
芸術科学会論文誌 Vol. 10, No. 1, pp. 12 – 27

Curve Mesh Modeling Method of Trimmed Surfaces for Direct

Modeling

Yuta Muraki∗1 Kouichi Konno∗2 Yoshimasa Tokuyama∗3
∗1∗2Faculty of Engineering, Iwate Univ.　 ∗3Faculty of Engineering, Tokyo Polytechnic Univ.

E-mail: murakiyuta@lk.cis.iwate-u.ac.jp

Abstract
In the shape modeling with 3D CAD systems, the trimmed surface is quite popular. For instance, Japanese Industrial
Standards (JIS) models contain a lot of notches, expressed using trimmed surfaces. Since trimmed surfaces are directly
modified in direct modeling, it has a big restriction in the shape modification. It is effective to apply a new free-form
surface to a closed region composed of the modified edges because the consistency of a trimmed surface can be maintained.
This paper proposes the method of fitting a free-form surface by using the offset curve. To be more concrete, an offset
curve is generated according to the tangent planes and a point cloud is generated. After that, a B-spline surface is
generated using the generated point clouds and the boundary curves, so that a new trimmed surface is generated. Our
method is effective for direct modeling that directly modifies the boundary edges of the trimmed surface representing a
notch shape.
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1 Introduction

In the shape modeling operations with 3D CAD sys-

tems, the trimmed surface[1] is quite popular. In the

shape modeling with CAD systems, there is a design

method called“ feature base modeling”. Since CAD

systems define their unique features, data might not

be converted correctly between different CAD sys-

tems. Due to this restriction, the converted shape

data must be modified in order to correct it. The

boundary edge that trims a surface is the curve ly-

ing on the surface within a certain tolerance. If the

surface shape and the trimming boundary edge are

modified separately, the consistency of them will col-

lapse. Whenever the control points of the surface are

moved or the shape of the boundary edge is modified,

the consistency of the trimmed surface must be main-

tained, and this is a big restriction in the modeling

operations.

If the shape of an edge is modified using the di-

rect modeling, the control points of the surface must

be moved appropriately so that the resultant edge

must lie on the surface within a certain tolerance.

In general, the sequence of the boundary edges of a

trimmed surface forms an N-sided closed region. Once

the shape of the boundary edges is separately modi-

fied, the control points of the surface cannot be moved

easily in order to lay the boundary edges on the sur-

face within a certain tolerance. Therefore, after direct

modeling operations, it is effective to apply a new free-

form surface on the closed region so that the geomet-

rical consistency can be maintained.

In general, the JIS 3D models often contain notches,

as shown in Figure 1. Figure 1 (b) shows one of

the trimmed surfaces of the model (a) and its con-

trol points. As the control points shows, the notch

trims the original surface.

The methods of fitting a surface to an N-sided

closed region are classified into surface interpola-

tion and N-side filling[3]. The surface interpolation

method interpolates a closed region with free-form

surfaces so that the boundary edges of the closed re-

gion coincide with the boundary curves of the free-

form surfaces. The N-side filling method generates a

quadrilateral trimmed surface that includes a closed

region of the boundary curves. The technique of the

surface interpolation method is detailed first. Piegl

et al. introduced an interpolation method with the

angle tolerance ε to generate smooth surfaces[4]. In

his method, the angle of the normal vectors on an ar-

bitrary point of the common boundary edge between

adjacent patches becomes smaller than ε. Yi-Jun

Yang et al. enhanced the Piegl’s method to apply ra-
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tional curve meshes[5]. Sederberg et al. proposed

T-splines that relaxed the restriction of the topol-

ogy of NURBS[6]. In his method, the control points

that are not important geometrically can be removed.

Therefore, T-spline reduces a lot of control points

in order to permit T-shaped connection. Chongyang

Deng et al. proposed an efficient algorithm for con-

structing Catmull-Clark surfaces[7][8]. The method of

Chongyang Deng et al. models surfaces by repeating

element division. The method need not consider the

connection of surfaces, and is suitable for interactive

construction of free-form surfaces.

The proposed methods[4, 5, 6, 8] are integrated into

Catmull-Clark subdivision[7]. In an N-sided region,

the center point and division curves are generated so

that the region is divided into N quadrilateral regions,

and a surface is interpolated to each of the gener-

ated regions. For example, Figure 2 shows a nine-

sided face. Depending on the shape of the boundary

edges of a closed region, the division curves are gen-

erated outside the region. In this paper, the surface

generated outside the region or the undulating sur-

face is defined as a distorted surface. Moreover, the

methods[4, 5, 6] cannot be applied to a region with

holes. Garcia et al. proposed the method of fitting a

surface to an arbitrary N-sided region by dividing the

region into a star-shaped N-sided patch and quadri-

lateral patches, which can be controlled using param-

eter f [9]. The method[9], however, is not applied to

a shape with holes similarly.

Next the trimmed surface generation method is

detailed. Tokuyama et al. proposed the method

of fitting a bicubic B-spline surface to an N-sided

region[10]. The method[10] applies a bicubic B-spline

surface to a quadrilateral region enclosed with free-

form boundary curves. When a B-spline surface is

generated, four boundary curves are generated first,

and according to the tangent plane on each of the

boundary curves, point clouds are generated onto the

tangent plane outside the quadrilateral region. Then,

using the four boundary curves and the generated

point clouds, the internal control points are calcu-

lated for the B-spline surface. The method[10] can

be applied to an arbitrary N-sided region composed

of convex vertices. If, however, the method is applied

to a region with a concave, the generated surface will

be distorted.

In this paper, we propose the method of fitting a

free-form surface without distortion to a model, even

Fig. 1: JIS sample shape model[2]

though the surface includes holes or concave shapes.

To be more concrete, the Tokuyama’s method[10] is

enhanced with the following two operations so that

a surface can be generated to a region with holes or

concave shapes:

(1) An offset curve[11] is generated according to the

tangent plane around the concave vertex, so that

a point cloud is generated.

(2) Cross boundary tangent lines are obtained from

the point on the edges except the one connected

to the concave vertex, so that the four boundary

curves of a B-spline surface are generated.

In our method, boundary edges are input, and a

surface is generated so that the boundary edges lie

on the surface within a certain tolerance. Therefore,

a geometrical consistency is maintained between the

surface and the boundary edges. In our method, a

bicubic B-spline surface is used since the surfaces used

most as the machine parts are cubic. Our method

is effective for direct modeling that directly modifies

notch geometry.

2 Related Works and Problems

2.1 Surface generation method with

two or more surface patches

The method of Garcia et al.[9] inputs boundary

edges representing a star-shaped N-sided region and

interpolates two or more smooth patches in the re-

gion. N regular patches Xn composed of quadrangles
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Fig. 2: Example of surface subdivision with Catmull-

Clark base

Ci and Li are generated around the star-shaped N-

sided patch. The size of the star-shaped N-sided patch

can be controlled using parameter f . If the value of f

increases, the N-sided region will be large; and if the

value of f decreases, the region will be small. With

this method, an intuitive shape operation is possible

and an arbitrary N-sided shape can be interpolated

with surface patches.

2.2 Method of covering a region with

a B-spline surface

Tokuyama et al. proposed the method of fitting a

surface by surface fitting method[10]. The method of

Tokuyama et al. uses the boundary curves of a B-

spline surface that covers an N-sided region and sam-

ple points. In the method, a straight line is generated

to generate sample points lying on the tangent plane

of the boundary edge. In this paper, the straight line

is called“a Cross Boundary Tangent Line (CBTL)”.
Suppose a surface is applied to an N-sided region

whose boundary edges are drawn in blue in Figure 3

(a). First, as shown in Figure 3 (a), four reference

planes are extracted so that they enclose the bound-

ary edges. After that, as shown in Figure 3 (b), the

lines are generated based on the tangent plane of the

boundary edge, and the intersection points between

the straight lines(CBTLs) and the reference planes are

calculated. As shown in Figure 3 (c), a sequence of

the intersection points is approximated by a B-spline

curve, and the boundary curves that cover an N-sided

region are generated. After that, sample points are

generated on the CBTLs.

Fig. 3: Calculating sample points from boundary

edges

2.3 Problems

The concave shape referred in this paper is defined

first. As Figure 4 (a) shows, we pay attention to ver-

tex P . Two edges share vertex P , and the unit tan-

gent vectors on vertex P for the two edges are v1

and v2. The outer product vector V is calculated us-

ing equation (1). As equation (2) shows, the inner

product is calculated between vector V and the mean

normal vector n of the boundary edges of the N-sided

region. When the inner product is positive, vertex P

is set as a convex vertex, otherwise vertex P is set as

a concave one.

V = v1 × v2 (1)

V · n =

{
> 0 (convex vertex)

other (concave vertex)
(2)

If the CBTLs generated from a boundary edge are

intersecting each other or they are twisted, as shown

in the section in the red circle of Figure 4 (b), the

boundary edge is regarded as a concave edge. When

a shape contains one or more concave vertices or edges

defined above, the shape is defined as a concave shape.
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Fig. 4: Defining a concave shape

Fig. 5: Example of applying the method of Tokuyama

et al. to a concave shape

When the method[9], it is difficult to apply a sur-

face to a concave shape such as an L-shaped region.

Moreover, if the method is applied to the region with

holes, an N-sided patch cannot be generated and as a

result, a surface will not be generated.

If the method[10] is applied to a concave shape,

the surface will be generated to undulate as shown in

Figure 5. In addition, it is not clear that a surface

can be applied to a shape with holes. The reasons

why the generated surface undulates are as follows:

(1) The point cloud generated from the CBTLs is

generated inside the region around the concave

vertex.

As shown in Figure 6 (a), the cross boundary

derivatives of the two edges connected to the

concave vertex are twisted. Because of this, the

CBTLs are generated inside the N-sided region.

When a sample point is generated inside the

N-sided region, the generated surface undulates

since it is restrained to the point cloud that does

not lie on the surface. In addition, the boundary

curves of the surface may be twisted because of

Fig. 6: Generating CBTLs on concave shapes

the intersection of the CBTLs.

(2) The method of generating the boundary curves

of a B-spline surface is limited and it cannot be

applied to concave shapes.

As shown in Figure 6 (b) and (c), the CBTLs

generated from a boundary edge of the concave

shape may intersect each other or twist. Because

of this, if boundary curves are generated from

the points obtained from the end points of the

CBTLs, the boundary curves will be distorted.

From the reasons described in this section, the

method[10] can generate a non-distorted B-spline sur-

face for a convex N-sided region, although a distorted

surface may be generated for an N-sided region with

a concave shape.

In addition, the posture of a space should be con-

sidered. The four reference planes obtained in the

method [10] are dependent on the posture of the

boundary edges in 3-dimensional space. If the posture

of the boundary edges differs, the reference planes will

vary, and so will the generated surface.

3 Proposed Methods

3.1 Method of generating four refer-

ence planes

The method[10] depends on the posture of a shape

in the 3-dimensional space. Due to this, there was a

problem that the boundary curve is distorted depend-

ing on the posture in 3-dimensional space although the

shape was the same. It is necessary to generate four

reference planes so that their boundary curves are not

distorted. In our method, a local coordinate system is
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newly set using shape data and four reference planes

are generated using the local coordinate system. The

four reference planes are generated in the following

procedure:

(1) From the center of the boundary edges of a

closed region and vector n for which the mean

normal vector is normalized, the mean plane is

generated[14].

(2) The boundary edges are projected to the mean

plane and projected boundary edges are gener-

ated.

(3) Among the projected boundary edges, the longest

edge is selected. The X-axis of the local coordi-

nate system is decided from the start point p0

and the terminal one p1 of the longest edge as:

X =
p1 − p0

|p1 − p0|
(3)

(4) The outer product vector between vectors X and

n is calculated to decide the Y-axis as:

Y = n×X (4)

The obtained X and Y axes are set on the mean

plane.

(5) The unit mean normal vector n is regarded as the

Z-axis. From the obtained X, Y and Z axes, the

local coordinate system is set.

(6) In the local coordinate system, the bounding

box of the projected edges is obtained. From

the bounding box and the Z-axis, four reference

planes are calculated.

The obtained four reference planes are not depen-

dent on the posture of a shape in the 3-dimensional

space; i.e., the reference planes are obtained using

affine invariable. As a result, the problem where the

distortion of the boundary curves is generated in the

existing method is improved.

3.2 New method of generating CBTLs

The CBTL in the method[10] represents the tangent

plane at a point on the boundary edge. In order to

apply a surface to a region, after the CBTLs are gen-

erated, a point cloud is generated outside an N-sided

region according to each of the CBTLs. Then, sur-

face fitting is performed according to the point cloud,

and a B-spline surface is generated. Around a concave

shape, a point cloud is generated inside the N-sided

region. In addition, if the CBTLs intersect or twist

each other, a point cloud scatters to the space. From

these reasons, the point cloud located on the tangent

planes will be vague. In other words, some points are

generated on a surface where they should not exist

and a surface will be applied vaguely to a region.

To solve the above problems, our method enhances

the CBTL generation method around concave vertex.

To be more concrete, the method [10] is extended

according to the operations below, so that the prob-

lem described in section 2.3 will be solved.

(1) If one of the end points of a boundary edge is

a concave vertex, as shown in Figure 6 (a), the

CBTLs are generated from an offset curve based

on the tangent planes. The offset curve genera-

tion is described in section 3.3.

(2) If a boundary edge is a concave edge, as shown in

6 (b), the CBTLs are generated from the offset

curve, in the same way as (1).

(3) If two or more CBTLs of a boundary edge inter-

sect, as shown in Figure 6 (c), the CBTLs are

generated again in the direction based on curves

the tangents of the edge at sample points.

As shown in Figure 7, the outer product is ob-

tained using equation (5) between the normal

vector a and tangent vector b of the tangent

plane at a sample point of the boundary edge.

The obtained vector c is set as the direction of

the CBTLs. Then, the intersection points are ob-

tained between the direction vector of the CBTLs

and the four reference planes, so that new CBTLs

are generated between the nearest intersection

point and the sample point.

c = a× b (5)

The operations described above are applied to a

concave shape shown in Figure 6, and the CBTLs are

regenerated as shown in Figure 8.

– 16–



芸術科学会論文誌 Vol. 10, No. 1, pp. 12 – 27

Fig. 7: Regenerating CBTLs

Fig. 8: Result of CBTL regeneration from offset curve

3.3 Regenerating CBTLs based on an

offset curve

A point cloud must be generated around a concave

vertex to lie on a tangent plane outside the region.

Around a concave vertex, however, the point cloud is

generated inside the region because the cross bound-

ary derivative is generated inside the boundary edge.

Due to this, in our method, the direction of the cross

boundary derivative is corrected and an offset curve

is generated according to the cross boundary deriva-

tive, so that a CBTL is generated outside the region.

As a result, a point cloud is generated outside the re-

gion so as to lie on a reference plane. If the offset

value is too large, the cross boundary derivative will

self-interfere. To avoid the self-interference, the offset

value is controlled when the offset curve is generated.

3.3.1 Cross boundary derivative generation

In our method, a Tangent Ribbon[1] is assumed

with the cross boundary derivative. When one of the

end points of a boundary edge is a concave vertex, as

Fig. 9: Correcting the direction of cross boundary

derivative

shown in Figure 9, the Tangent Ribbon will be twisted

and the cross boundary derivative is introduced in the

opposite direction from a certain position. In the case

of the shape of Figure 9, cross boundary derivative

g0 on the concave vertex is generated toward the in-

side of the N-sided region. Then, the cross boundary

derivative around the edge is derived after the direc-

tion of the vector g0 becomes opposite. This opera-

tion maintains the consistency of the tangent plane at

the vertex.

Figure 10 shows two adjacent Bezier surfaces S1 and

S2. The Bezier surface with control point Pij (i =

0,…,3; j = 0,…,3) is shown in equation (6), where

Bn
i (u) and Bm

j (v) are Bernstein base polynomials[1].

S(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)B

m
j (v)Pij (6)

In order that two adjacent surfaces are G1-continuous,

the cross boundary derivative obtained from the

points on the boundary edges need to satisfy equa-

tion (7)[13].

S2
u(0, v) = k(v)S1

u(1, v) + h(v)S1
v(1, v) (7)

where k(v) and h(v) are the scalar functions of v .

S2
u, S

1
u and S1

v are obtained using equation (8):
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Fig. 10: Vectors at end points

S2
u(0, v) =

∂S2(0, v)

∂u

S1
u(1, v) =

∂S1(1, v)

∂u

S1
v(1, v) =

∂S1(1, v)

∂v

(8)

When v = 0 and v = 1 are assigned to equation (7),

equation (9) is obtained:

b0 = k0a0 + h0c0

b3 = k1a3 + h1c2
(9)

where k0, k1, h0 and h1 are real numbers, k0 > 0,

k1 > 0 and a0, a3, b0, b3, c0 and c2 are the vectors

between the control points. In our method, if h0 = 0

and h1 = 0 are assumed, equation (10) is obtained:

b0 = k0a0

b3 = k1a3
(10)

Here, to satisfy equation (9), the scalar function k(v)

about v is assumed to be a linear function.

k(v) = k0(1− v) + k1v (11)

From equations (7) and (11), the equation (12) is ob-

tained using the vectors between the control points of

a surface (Figure 10):

3∑
i=0

B3
i (v)bi = {k0(1− v) + k1v}

2∑
i=0

B2
i (v)ai (12)

Since the left side of equation (12) becomes cubic, the

degree of polynomial ai is limited to be quadratic.

Therefore, when we assume ai using basis patch

method[12], the unit vectors a0 and a2 are calcu-

lated from the boundary and a1 is calculated using

the equation (13):

a1 =
a0 + a2

2
(13)

Since the cross boundary derivative is generated in the

opposite direction on the concave vertex in Figure 9,

S2
u(0, v) = −g0 is obtained. When v = 0, equation

(14) is obtained:

a0 = −k0g0 (14)

If equation (12) is solved, the following is obtained:

b1 = − (k0 + k1)g0

3
+

k0g1

3k1

b2 = −k0g0

3
+

(k0 + k1)g1

3k1

(15)

From equations (15), the cross boundary derivative

that corrects the direction of the point on the bound-

ary edge is obtained. As a result, the cross boundary

derivative is generated in the direction of the outside

of the region. The cross boundary derivative on the

point of the boundary edge is calculated. CBTLs are

generated from normalized cross boundary derivative

vectors and the same length t is applied to the follow-

ing equation:

P(v) = Q(v) + t
S2
u(0, v)

|S2
u(0, v)|

(16)

where P(v) is the end point of the CBTL, Q(v) is the

point on the boundary edge at parameter v.

3.3.2 Offset curve generation

If our method is applied to an L-shaped region, such

as the one shown in Figure 6 (a), the CBTLs intersect

each other. Since the intersection will cause a dis-

torted offset curve, the intersecting CBTLs, enclosed

with the red circle in Figure 11, are deleted. After
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Fig. 11: Deleting intersecting CBTLs

Fig. 12: Generated offset curve

that, the end points of the CBTLs are approximated

with a B-spline curve so that an offset curve is gener-

ated. Figure 12 shows the generated offset curve.

The CBTLs are regenerated between each point on

the boundary edges and the corresponding point on

the generated offset curve. Then, every generated

CBTL is divided into four segments and the sample

points are extracted as the point cloud.

Since the intersecting CBTLs are deleted upon off-

set curve generation, necessary data may be lacking.

To compensate this, around the concave vertex where

data is lacking, necessary CBTLs are generated by

finding the highest curvature point of the concave ver-

tex from the offset curve.

3.4 Method of generating boundary

curves

This section describes the method of generating four

boundary curves of the B-spline surface from an N-

sided region that involves a concave shape. As is de-

scribed in section 2.3, the method[10] may generate

CBTLs so that they intersect each other or they are

Fig. 13: Regenerating a CBTL through reverse-search

twisted. This causes distortion of boundary curves.

To avoid distortion, boundary curves are generated

by CBTLs obtained from convex edges.

Take an example of a L-shaped concave region. Fig-

ure 14 is a result of obtaining the CBTLs from con-

vex edges and generating the boundary curves of a

B-spline surface. Each of the four curves is an inde-

pendent B-spline curve, so that the end points of the

curves must coincide to form a closed region. Then, as

shown in Figure 14, since the end points of the bound-

ary curves must coincide, each of the end points of the

boundary curves is extended to the adjacent bound-

ary plane in the tangent direction. For instance, when

the points on the reference plane are assumed to be P1

and P2, these points are averaged to obtain point P3,

which is set as the end point of the curves. We applied

our method to 536 surfaces. As a result, we judged

that the influence on the surface accuracy caused by

this operation was not large. In the same manner,

four corner points of the B-spline surface are deter-

mined. Each of the boundary curves is re-fitted by

adding the corner points. Figure 15 shows the re-

sult of generating the closed boundary curves. Since

edges connected to the concave vertex or end points of

CBTLs generated from the concave edge are excluded,

the boundary curves are not distorted.

3.5 Procedure of generating a new sur-

face

This section describes the procedure to apply a sur-

face to a region according to our method. The sign

∗ indicates new processing steps. In our method,

boundary edges are input and a bicubic B-spline sur-

face is output. The flowchart of our method is shown

in Figure 16.
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Fig. 14: Four independent boundary curves

Fig. 15: Example of generating boundary curves for a

region with a concave vertex

∗ Step1: Using the method described in section 3.1,

four reference planes that enclose the boundary

edges are extracted.

∗ Step2: The concave shape is judged for both end

points of the boundary edge, and the edge whose

end points are convex vertices is selected. For the

selected edge, the processing similar to Step 2 of

section 2.2 is performed.

If a boundary edge is a concave one, like the edges

that generate CBTLs shown in the red circles in

Figure 6 (b), all the CBTLs of the boundary edge

are deleted.

If there are one or more intersection points of the

CBTLs, as shown in the red circle in Figure 6

(c), all the CBTLs of the corresponding bound-

ary curve are calculated again using the method

described in section 3.2.

∗ Step3: The offset curve is generated using the edge

connected to the concave vertex as described in

section 3.3, and then CBTLs are regenerated.

Then, a point cloud is generated on the CBTLs.

Fig. 16: Flowchart of our method

The generated point cloud lies on the tangent

plane at the sample points of the boundary edge.

A point cloud is generated on the boundary edge

representing a hole, and is added to the sam-

ple points. In our method, surface fitting is

performed only to the point cloud generated on

CBTLs. The machine parts have few undulating

surfaces. Therefore, we judged that the influence

on surface accuracy is not large even if only the

point cloud generated on CBTLs is used.

∗ Step4: The boundary curves of the B-spline sur-

face is generated as described in section 3.4.

Step5: From the point cloud generated in Step 3 and

the boundary curves generated in Step 4, the in-

ner control points of the B-spline surface are cal-

culated using the least-squares method. Details

of the approximation method are described in the

appendix.
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Fig. 17: JIS model used in our experiment

4 Experimental Results

Our method was applied to an N-sided region rep-

resenting a notch including concave shapes. The gen-

erated surface shape was evaluated and the accuracy

was verified.

4.1 B-spline surface generation

Our method was applied to the boundaries of a

trimmed surface obtained from practical data of the

JIS models[2] shown in Figure 17. Figures 18 and 19

show the result of generation of new trimmed surfaces.

(a) shows the shaded image of the generated trimmed

surface, (b) shows the point cloud extracted from the

CBTLs, (c) shows the error evaluation and (d) shows

the control points of the generated B-spline surface.

4.2 Method of shape evaluation

To verify the accuracy, the distance between the

generated surface and the source surface that the

trimmed surface retained was measured. The source

surface was divided equally in both u and v direc-

tions into twenty sections so that a square grid was

generated. The generated grid points lying inside the

trimmed surface were extracted. The extracted point

cloud was projected to the generated B-spline surface

and the shortest distance was measured.

In addition, in order to confirm that the source

boundary edges lie on the generated B-spline surface

within a tolerance, the distance between the source

boundary edge and the generated surface was mea-

sured. Figures 18 (c) and 19 (c) show the result of

shape evaluation. Figures 18 (c) and 19 (c) show the

Fig. 18: Shape A with a notch

Fig. 19: Shape B with a notch
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distance between the source surface and the gener-

ated one. The blue dots are put by projecting the

grid points of the source surface to the generated sur-

face. The red dots are put by extending the blue dots

in the normal direction of the tangent plane. The dis-

tance between a blue dot and a red one represents the

distance between the source surface and the generated

one multiplied by twenty five.

4.3 Comparison and shape evaluation

of methods

In this section, our method is compared with the

method of Garcia et al.[9] and Tokuyama et al.[10].

The existing methods and our method are applied to

the same concave shape with a hole shown in Figure

20 and the generated surfaces are compared to show

the effectiveness of our method.

Since the method of Garcia et al. does not deal

with the shape with holes, the method cannot gener-

ate a surface for the shape of Figure 20. Due to this,

the method of Tokuyama et al. and our method are

applied to the shape of Figure 20 and the generated

surfaces are evaluated.

The result of applying the Tokuyama’s method is

shown in Figure 21 and that of applying our method

is shown in Figure 22. In each of Figures 21 and 22,

(a) shows the shaded image of the generated surface

and (b) shows the parameter line of the generated sur-

face. Applying our method can remove the distortion

of the generated surface. Table 1 shows the result of

shape evaluation of the generated surface. In Table

1, three kinds of values are shown:“Avg”indicates

the average error margin value obtained by averag-

ing the distances between the generated surfaces and

the source one,“Max”indicates the maximum error

margin value representing the maximum distance be-

tween the generated surface and the source one,“Ra-

tio”indicates the ratio of the bounding box size and

the maximum distance. In addition, in order to ver-

ify whether the boundary edges lie on the generated

surface within a tolerance, the average error margin

value, the maximum error margin value, and the ratio

are also shown in Table 1. From the values, we can

find that our method can generate the surface with

better accuracy than the existing method.

Table 2 shows the result of shape evaluation per-

formed for the nine surfaces including notches and

Fig. 20: Concave shape with a hole

Table 1: Comparison of the generated surfaces by

each method(Method1:Tokuyama et al., Method2:our

method, Avg:Average error, Max:Maximum error)

Method Evaluation object Avg Max Ratio(%)

Method1 Trimmed surface 0.1087 0.8163 3.836
Boundary edges 0.1137 2.6637 12.51

Method2 Trimmed surface 0.0059 0.0246 0.115
Boundary edges 0.0018 0.0088 0.041

holes, obtained from the JIS model of Figure 17. Fig-

ure 23 shows the shape of the data listed in Table 2.

As shown in Table 2, the trimmed surface is approxi-

mated with good accuracy.

4.4 Verification of effectiveness on di-

rect modeling

To verify the effectiveness for direct modeling, one

of the boundary edges of the shape as shown in Fig-

ure 20 was modified as shown in Figure 24 (a) and our

method was applied to the modified boundary edge.

Figure 24 (b) shows the shaded image of the result.

We can find that the surface is generated without dis-

tortion for the modified boundary edge. The result of

shape evaluation of the generated surface is shown in

Table 3. Since the surface shape and the boundary

edge are modified separately, the geometrical consis-

tency of them will collapse. Therefore, the error mar-

gin of the generated surface and the source surface

cannot be evaluated. As shown in Table 3, we can

find that the surface is generated so that the bound-

ary edge lies on it within a small error margin.
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Fig. 21: Result of applying the method of Tokuyama

et al.

Fig. 22: Result of applying our method

Table 2: Evaluation of errors between the source sur-

face and the generated one
Shape Evaluation object Avg Max Ratio(%)

a Trimmed surface 0.0064 0.0206 0.096
Boundary edges 0.0034 0.0096 0.048

b Trimmed surface 0.0017 0.0034 0.019
Boundary edges 0.0020 0.0044 0.024

c Trimmed surface 0.0032 0.0082 0.039
Boundary edges 0.0017 0.0037 0.018

d Trimmed surface 0.0051 0.0286 0.156
Boundary edges 0.0014 0.0038 0.021

e Trimmed surface 0.0075 0.0233 0.109
Boundary edges 0.0032 0.0143 0.067

f Trimmed surface 0.0028 0.0077 0.037
Boundary edges 0.0012 0.0033 0.016

g Trimmed surface 0.0026 0.0064 0.044
Boundary edges 0.0007 0.0032 0.022

h Trimmed surface 0.0067 0.0231 0.180
Boundary edges 0.0014 0.0049 0.041

i Trimmed surface 0.0060 0.0220 0.100
Boundary edges 0.0025 0.0129 0.060

Fig. 23: Surface shapes used in our experiment

Fig. 24: Result of applying our method to modified

boundary edge

Table 3: Evaluation of errors between the generated

surface and the modified boundary edge
Evaluation object Avg Max Ratio(%)

Boundary edges 0.0026 0.0072 0.029
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5 Conclusion

In this paper, we proposed the method of fitting a

B-spline surface to an N-sided region with notches,

without distortion. In our method, the boundary

curves of a B-spline surface were generated with con-

sidering the shape around a concave. The offset

curves were also generated to compensate the deleted

CBTLs, which supplement the insufficient sample

points around the concave shape.

Our method was applied to the surface shape with

notches and holes, obtained from a JIS model and

the practicality was verified. The distances between

the trimmed surface and the B-spline surface gener-

ated using our method were measured and an excel-

lent result was obtained. The source surface of the

trimmed surface can be estimated from the boundary

curves and the effectiveness for direct modeling was

confirmed. In our method, continuity with the adja-

cent surfaces is not maintained. Our future work is to

extend this method so as to consider the continuity

with the adjacent surfaces. The basic concept of our

method has already been presented in NICOGRAPH

INTERNATIONAL 2010[15]. This paper describes

the details of the implementation.
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Appendix

Approximation method by using the least-

squares method

This section describes the outline of the approxima-

tion method by using the least-squares method[11]. In

our method, a surface is generated with the following

procedures by using the sample points generated in

Step 3 and the boundary curve generated in Step4 of

section 3.5.

(a) Presume the parameter values of the sample

points other than the point cloud, used upon

boundary curve generation.

(b) Calculate the control points of a surface by using

the least-squares method.

(c) Correct the parameter values of each point on the

surface and return to (b).

(d) Evaluate the distance between the surface and

the point. If all the values are smaller than the

specified error margin, finish the processing.

Presumption of u and v parameter values of

the point cloud

The point cloud approximation requires u and v

parameters of a given point cloud. The surface on

which sample point Q lies is assumed to be S(u, v).

Since surface S is unknown in (a), a ruled surface is

assumed first as initial surface S and sample point Q

is projected onto the surface. The u and v parameters

of the projected point Q′ are set to u and v parameter

values of sample point Q. In (c), the parameter values

are calculated by using sample point Q and surface S

generated in (b).

Surface control point calculation by least-

squares method

In (b), unknown control points are calculated by

using the least-squares method. When the fitting B-

spline surface is S(u, v), the surface control points are

Pi,j(0 ≤ i ≤ n, 0 ≤ j ≤ m). Surface S(u, v) is ex-

pressed by equation (17).

S(u, v) =

n∑
i=0

m∑
j=0

Ni,k(u)Mj,k(v)Pi,j (17)

where k = 3. The t+ 1 sample points are assumed to

be Qs(0 ≤ s ≤ t) and the parameters of u and v direc-

tions are assumed to be us and vs. Surface S(u, v) is

calculated so that the square sum of the distances be-

tween the sample points Qs and corresponding points

S(us, vs) on the surface is minimized. Then, equation

(18) is obtained.

f =
t∑

s=0

|Qs − S(us, vs)|2 (18)

In equation (17), the control point showing the bound-

ary curve is already known. When the known control

point is assumed to be Rs, equation (20) is obtained.

Rs =Qs −
(
N0,k(us)M0,k(vs)P0,0 +…

+N0,k(us)Mm,k(vs)P0,m

+N1,k(us)M0,k(vs)P1,0 +…

+Nn−1,k(us)M0,k(vs)Pn−1,0

+N1,k(us)Mm,k(vs)P1,m +…

+Nn−1,k(us)Mm,k(vs)Pn−1,m

+Nn,k(us)M0,k(vs)Pn,0 +…

+Nn,k(us)Mm,k(vs)Pn,m

)

(19)

f =

t∑
s=0

|Qs − S(us, vs)|2

=

t∑
s=0

[
Rs ·Rs − 2

n−1∑
i=1

m−1∑
j=1

Ni,k(us)Mj,k(vs)(Rs ·Pi,j)

+

(
n−1∑
i=1

m−1∑
j=1

Ni,k(us)Mj,k(vs)Pi,j

)
·

(
n−1∑
i=1

m−1∑
j=1

Ni,k(us)Mj,k(vs)Pi,j

)]
(20)

If equation (20) is differentiated by unknown control

point Pα,β and the differentiation value becomes 0,

the value of f is minimized.

∂f

∂Pα,β
= 0 (21)
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where 1 ≤ α ≤ n − 1 and 1 ≤ β ≤ m − 1. From

equations (20) and (21), equation (22) is obtained.

n−1∑
i=1

m−1∑
j=1

(
t∑

s=0

Nα,k(us)Mβ,k(vs)Ni,k(us)Mj,k(vs)

)
Pi,j

=
t∑

s=0

Nα,k(us)Mβ,k(vs)Rs

(22)

When (n− 1)× (m− 1) equations are set up for Pα,β

(1 ≤ α ≤ n− 1, 1 ≤ β ≤ m− 1) of equation (22), the

following matrix is obtained.

NP = R (23)

where

N =



A1,1,i,j

A2,1,i,j

...

Aα,β,i,j

...

An−1,m−1,i,j


(24)

A1,1,i,j =

[
t∑

s=0

N1,k(us)M1,k(vs)N1,k(us)M1,k(vs),…,

t∑
s=0

N1,k(us)M1,k(vs)Ni,k(us)Mj,k(vs),…,

t∑
s=0

N1,k(us)M1,k(vs)Nn−1,k(us)Mm−1,k(vs)

]
(25)

Aα,β,i,j =

[
t∑

s=0

Nα,k(us)Mβ,k(vs)N1,k(us)M1,k(vs),…,

t∑
s=0

Nα,k(us)Mβ,k(vs)Ni,k(us)Mj,k(vs),…,

t∑
s=0

Nα,k(us)Mβ,k(vs)Nn−1,k(us)Mm−1,k(vs)

]
(26)

R =

 N1,k(u0)M1,k(v0)R0 + · · ·+N1,k(ut)M1,k(vt)Rt

..

.
Nn−1,k(u0)Mm−1,k(v0)R0 + · · ·+Nn−1,k(ut)Mm−1,k(vt)Rt


(27)

P =

 P1,1

.

..
Pn−1,m−1

 (28)

Solving equation (23) obtains unknown control points

Pi,j .
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