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Abstract
A visual expression called Energy-Wave, which shows light emission from high-energy fields, is pop-
ularly used in creative contents such as animations and computer games. This research proposes
a new method for representing energy-Wave in real-time 3D graphics. Conventional energy-wave
rendering techniques use the animation texture or the particle animation. However, the animation-
texture method restricts the view point, and the boundaries of the energy-wave appear too clearly.
The particle-animation method is not suitable for showing a dense energy field and not appropriate
for covering a wide region. This paper presents a new method in which the energy distribution is
described as a continuous scalar function. The new method is advantageous over the conventional
methods since there is no restriction of the view point, resolution, and the covering region. The pro-
posed method also utilizes GPGPU, and the output images are dynamically created from small input
and can quickly deform the shape of the energy wave. The previous work of this research was able to
deal with point-centered and line-centered energy-distribution functions. The new method can deal
with torus-shaped and quadratic curve-centered distribution functions quickly.
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1. Introduction

Visual expression of strong light emission from a
high-energy blob moving in the 3D space is intro-
duced to create impressive contents such as an-
imations and cartoons. These expressions come
from a special effect of the light ray used in the
movies, which evolved in the Japanese anima-
tion. It is recently called Energy-Wave among
animation-enthusiasts. Although this technique
may be called differently in the different com-
munity, the expression itself is commonly used.
(Nowrouzezahrai [1] calls this effect as “Artistic
Volumetric Light.”) This paper refers this visual
effect as Energy-Wave. Our research defines the
Energy-wave as a virtual phenomenon of strong
light emission from high energy-density locations,
which is a similar definition as in [2], and the
shape of the light source deforms as the energy-
distribution changes over time.

Visual effects using the energy-wave are widely
used in variety of contents including animations,
live-action films, computer graphics, and so on.
The recent fast computer-graphics hardware al-
lows real-time rendering of the energy-wave, and
it is used in the interactive contents such as com-
puter games. However, real-time graphics sys-
tems are typically optimized for drawing planes
and curved surfaces, and not for the energy dis-
tribution in space. A computer-game program
typically draws the energy-wave by the anima-
tion texture or the particle animation [3]. One of
the advantages of the animation-texture method
is that the artist can prepare the exact image of
the energy-wave. On the other hand, the bound-
ary between the inside and the outside of the
energy-wave becomes unrealistically visible. This
artifact can be made less visible by adjusting the
transparency, in which case the view point is re-
stricted. The particle-animation method does not
restrict the view point. However, it is not good at
drawing the energy-wave from the energy densely
filling the large volume since it draws the energy-
wave as a set of grainy point light sources.

Nowrouzezahrai [1] proposes a volumetric
light-rendering technique based on the photon-
mapping algorithm, which is suitable for dense
energy distribution. However, this technique is

for pre-rendered contents such as movies, and is
not appropriate for real-time rendering.

Numerous researches have been presented
methods for rendering dense energy distribution
over the space. One of the most popular meth-
ods is a variation of the voxel-based method pre-
sented by Drebin et al. [4]. GPU-based volume-
rendering techniques have been proposed recently
[5][6], which can draw such a visual effect very
fast. On the other hand, the energy distribution
stored in the GPU memory space cannot be up-
dated quickly, and it is not appropriate for cov-
ering large volume either.

Another class of techniques is based on im-
plicit functions. Blinn [7] proposes “Blobby-
Model”, and Nishimura [8] proposes “Meta-Ball”.
Kanamori [9] and Kanai [10] proposes a tech-
nique to implement in the GPU. These methods
are more focused on drawing a specific shape,
and cannot directly be applied for rendering
the energy-wave. Pasko [11], Schmitt [12] and
Børlum [13] can express transparency and inten-
sity. These methods are, however, for simulat-
ing the optical phenomenon of the incoming light
within the geometric shape, and not suitable for
the energy-wave expression in which the space it-
self emits the light.

Billeter et al. [14][15] propose a real-time ren-
dering technique of the Tyndall-scattering effect
by applying the real-time shadow rendering tech-
nique. This method is also for simulating the op-
tical phenomenon inside the liquid and not suit-
able for the energy-wave.

This research is specialized for the energy-wave
expression, similar to Abe et al. [2], and pro-
poses new dense energy-distribution functions de-
fined over the 3D space, and a real-time render-
ing technique of such functions. This research
proposes two new energy-distribution functions,
(i) torus shaped, and (ii) centered along arbi-
trary quadratic curve, in addition to a point-
centered (spherical) and a line-centered (cylin-
drical) functions. Arbitrary quadratic curves in-
clude Bézier curves and parabolic curves, which
substantially expands the freedom of the model-
ing of the energy distribution. Another advantage
of this method is that it can deform the shape of
the energy wave quickly because this method ren-

– 99 –



The Journal of the Society for Art and Science, Vol. 15, No. 2, pp. 98 – 110 (2016)

ders the energy-wave in each frame, as opposed
to the many previous methods that require a pre-
rendered image.

In the rest of the paper, Section 2 describes
torus-shaped and quadratic curve-centered
energy-distribution functions. Sections 3 and 4
explains the proposed fast-rendering technique
using GPGPU. Section 5 shows some experimen-
tal results, which confirms that the proposed
method can achieve practical rendering speed.

2. Energy-Wave Distribution
Function

This method describes the energy-intensity at a
point in the three-dimensional space as the fol-
lowing scalar function:

ψ(P) : P ∈ R3, ψ(P) ∈ R, (1)

where R is the set of real number. The higher
the intensity value ψ(P) the brighter the light
emission at P. The next section describes details
of the light-emission calculation.

2.1. Energy-Distribution Function of the
Previous Method

In our previous work [2], a distribution function
S(P,M) that decays radially from an arbitrary
point M is defined as equation (2):

S(P,M) =
1

|P−M|
. (2)

Also a distribution function that decays radi-
ally from a line that passes through point M and
is parallel to unit vector D as equation (3):

C(P,M,D) =
1√

|P−M|2 − ((P−M) ·D)2
,

(3)
where P is a point in the space.

2.2. Torus-Shaped Distribution Function

A general torus surface is defined as a surface of
revolution of a circle of radius r lying on the xz-
plane:

C : (x−R)2 + z2 = r2 (0 < r < R) (4)

revolved about the z-axis. The following equation
(5) describes its implicit form:

T :
(√

x2 + y2 −R
)2

+ z2 = r2. (5)

Solving equation (5) for r yields the following
equation (6):

r =

√(√
x2 + y2 −R

)2
+ z2. (6)

This defines distance between a point (x, y, z)
and the core curve, or major circle, of the torus.
From this equation, the torus-shaped energy-
distribution function can be defined as equation
(7):

T (P, R) =
1√(√

Px
2 + Py

2 −R

)2

+ Pz
2

. (7)

The major-radius of the torus can be controlled
by adjusting the value of R.

In this method, the energy intensity at a cer-
tain point is influenced only by the distance from
the nearest point on the circular light-source arc.
It is also possible to define an energy-distribution
function in which the energy intensity is influ-
enced by the multiple points on the arc. Al-
though such a function may appear to be mathe-
matically correct, it yields an unintentional out-
come. Since entire arc contributes to the en-
ergy intensity near the center of the circle, the
energy distribution becomes more like an ellip-
soid than a torus, unless the circle radius is suf-
ficiently large. Therefore, this method uses an
energy-distribution function in which the energy
intensity is a function of distance from the near-
est point on the arc. Figure 1 shows a com-
parison between two types of energy-distribution
functions, an image rendered with the energy-
distribution function of this method (left), and
with the energy-distribution function in which
multiple points on the arc contribute to the
energy-intensity at a point (right).
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Figure 1: An image rendered with the energy-
distribution function of this method (left),
and with the energy-distribution function
in which multiple points on the arc con-
tribute to the energy-intensity at a point
(right).

2.3. Energy-Distribution Function
Centered along Quadratic Parametric
Curve

This section describes an energy-distribution
function centered along a quadratic parametric
curve, which can be described by a sequence of 3D
vectors {C0,C1,C2} and a parameter t (t ∈ R)
as follows:

C : C(t) = C2t
2 +C1t+C0 . (8)

Although this expression cannot represent ar-
bitrary quadratic curves, such as circular arcs
and hyperbolic curves, it can describe parabolic
curves and free-form curves known as a Bézier
curve. It also can describe a free form curve
known as Bézier curve. A quadratic Bézier curve
defined by three control points {B0,B1,B2}:

C(t) = (1− t)2B0 + 2t(1− t)B1 + t2B2 (9)

can be re-written in the form of equation (8) by
substituting:

C2 = B0 − 2B1 +B2

C1 = −2B0 + 2B1

C0 = B0

. (10)

If C(α) is a point on a C1-continuous curve C
and is closest to point P, a line passes through
P and C(α) and the tangent of curve C at C(α)
are perpendicular as shown in Figure 2.

Figure 2: Calculation of the Closest Point.

This implies equation (11):

d

dt
C(α) · (P−C(α)) = 0. (11)

Therefore, real solutions of equation (11) give
candidates of the closest point.

Substituting equation (11) into (8) yields the
following cubic equation:

d

dt
C(t) · (P−C(t)) =

2|C2|2 t3 + 3(C1 ·C2) t
2+(

2(C0 ·C2) + |C1|2
)
t+C1 · (C0 −P).

(12)

A cubic equation can be analytically solved and
does not require a numerical method for finding
exact solutions.

The proposed method calculates the distance
between point P and curve C in the following
steps:

1. Solve equation (12) and find real solutions
that are within the parameter domain of the
curve (eg. 0 ≤ ti ≤ 1 if the curve is a Bézier
curve,) which are denoted as {t1, t2, t3}. So-
lutions t2 and t3 may not exist.

2. For each ti calculated in Step 1, calculate a
point on the curve C(ti) .

3. Calculate two end points of the curve (eg.
C(0) and C(1) if the curve is a Bezier curve).

4. Calculate distances between P and each
point calculated in Steps 2 and 3.

5. Minimum of the distances calculated in Step
4 is taken as the distance between P and C.
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The proposed method employs Cardano’s for-
mula [16] for finding solutions of the cubic equa-
tion. Details is described in Appendix A.

The energy-distribution function Q(P,C) can
then defined as:

Q(P,C) =
1

L(P,C)
, (13)

where L(P,C) is the distance between point P
and curve C calculated in the above steps.

Similar to the torus-shaped energy distribution
function described in Section 2.2, this method
only considers the distance from the nearest point
on the curve for calculating the energy intensity
at a certain point. An energy-distribution func-
tion in which multiple points on the curve influ-
ence the energy intensity at a point has two major
problems:

(1) Energy intensity is lower near the end points
of the curve.

(2) Energy intensity inside of the high-curvature
segment of the curve becomes higher than
desired.

The shape of the energy-wave does not look simi-
lar to the input curve as a result of the two prob-
lems. In other words, it becomes difficult for the
user to predict the shape of the energy wave from
the input curve and parameters. Figure 3 shows
the comparison between the energy-distribution
function of the proposed method (left), and the
energy-distribution function in which multiple
points contribute to the energy-intensity at a
point (right).

Figure 3: An image rendered with the energy-
distribution function in which the intensity
is a function of the distance from the near-
est point on the arc (left), and with a func-
tion in which multiple points contribute to
the intensity at a point (right).

The image on the left of Figure 3 shows the
energy-wave that appears to be similar to the
input curve. On the other hand, the energy-
distribution on the right shrinks near the both
ends of the curve. Also it swells into the in-
side of the curvature. We believe the image
on the left better expresses the intention of the
user, and therefore the proposed method uses the
energy-distribution function in which the energy-
intensity at a point is a function of the distance
from the nearest point on the curve.

2.4. Locally Adjusting Intensity by a
B-Spline Basis Function

The function Q(P,C) described in Section 2.3
uniformly distributes energy over the curve. If
it is possible to control the energy distribution
locally for the different parts of the curve, such
functionality increases the flexibility of the ex-
pression. For example, it can easily implement
an expression of the energy wave travelling along
the curve. Figure 2 shows an example of the local
adjustment.

Figure 4: Example of the local adjustment.

Earlier work [2] theoretically can generate a
similar expression by combining spherical and
cylindrical distribution functions. However, the
earlier work requires evaluation of multiple dis-
tribution functions, which yield slower rendering.
The new method requires only one distribution
function, and therefore can achieve such a flex-
ible expression without sacrificing the rendering
speed.

The proposed method uses a B-Spline basis
function for controlling the energy distribution lo-
cally. The advantages of using a B-Spline basis
function are:
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1. It can express a natural appearance of the
energy distribution because continuity of the
function has been very well studied.

2. It can be evaluated quickly since it takes only
four arithmetic operators of real numbers.

3. It is more flexible than Bezier basis function
in terms of local controllability.

A B-Spline basis function is defined by a mono-
tonically increasing column
U = [u0, u1, . . . , um−1] and degree k as:

N0
i (t) =

{
1 if ui ≤ t ≤ ui+1

0 else
,

Nk
i (t) =

t− ui
ui+k − ui

Nk−1
i (t)−

t− ui+k+1

ui+k+1 − ui+1
Nk−1

i+1 (t), (14)

where U is called knot vector.

An adjustment function S(t) is defined with a
series W = [w0, w1, . . . , wn−1] as:

S(t) =

n−1∑
i=0

wiN
k
i (t), (15)

where W is a series that defines local intensity
over the curve.

In this research, we have selected k = 2
for faster rendering and limiting influence of wi

within the immediate-neighbor segment.

The length ofW is variable. When the number
of elements in W is n, and the curve is param-
eterized for the range [0, 1], wi controls an en-
ergy intensity of the segment around the location
where the parameter is i

n−1 . The knot vector for
n should be defined as:

U =

[
0, 0, 0,

1

n− 2
,

2

n− 2
, . . . ,

n− 3

n− 2
, 1, 1, 1

]
.

(16)

For example, Figure 5 shows the plot of S(t)
when W = [1.0, 0.6, 0.2, 0.4, 0.8, 0.6, 1.0] .
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Figure 5: Graph of S(t).

Finally, S(t) is combined with the function for
locally adjusting the energy intensity (13), and
the new distribution function is defined as:

B(P,C) = S(t) ·Q(P,C), (17)

where t is the parameter of curve C at the nearest
point to point P.

2.5. Multiple Light Sources

The final scalar field function ψ(P) is the sum of
all energy-distribution functions defined by equa-
tions (2), (3), (7), and (13) as:

ψ(P) =
∑
i

siSi(P) +
∑
i

ciCi(P)+∑
i

tiTi(P) +
∑
i

biBi(P), (18)

where si, ci, ti, and bi are real coefficients for
each energy-distribution function, and are called
energy coefficients in the rest of the paper. The
effect of each energy-distribution function can be
controlled by adjusting these coefficients.

3. Rendering

The proposed rendering method is similar to
the conventional ray-casting method. The ray-
casting method shoots a ray per pixel from the
view point toward the projection plane, and then
numerically or analytically integrates the volume
data along the ray to decide the color of the pixel.

Since the volume data in the proposed method
is a scalar function, instead of a voxel data, the
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pixel color is decided based on the curvilinear in-
tegration of the scalar function.

3.1. Deciding the Interval of Integration

Let S be an arbitrary position in the pixel space
on the projection plane, and E be a point that
lies on the far extension of the line on which S
and the viewing (or camera) position are lying.

The integration interval is the line segment be-
tween S and E. This line segment L is described
using parameter s as:

L : L(s) = (1− s)S+ sE (0 ≤ s ≤ 1). (19)

E lies on the extension of the viewing direction
from S, and must be placed certain distance away
from S. E must also be sufficiently distant from
the energy wave. However, the calculation be-
comes less precise as E moves farther away from
S, and may yield an inappropriate rendering. In
the experiments performed in this research, the
distance between the energy wave and E needs to
be approximately 4 times of the distance between
the projection plane and the energy-wave center
to obtain a good result.

3.2. Calculation of the Brightness

The brightness of the pixel is calculated as equa-
tion (20): ∫ 1

0
ψ (L(s)) ζ(s)ds, (20)

where ψ is a scalar field function of the energy
distribution in equation (18), and ζ is the decay
function of distance. In general, the light inten-
sity at the view point is inversely proportional to
the distance square, and ζ simulates this effect.
The following decay function is used in this re-
search:

ζ(s) =
α

(s+ β)2
, (21)

where α and β are the constants for making ad-
justments.

It is ideal if equation (20) can be analytically
calculated and exact value of the light intensity

can be obtained. However, the analytical solu-
tion to equation (20) is a non-elementary function
that consists of hundreds of terms, numerical cal-
culation is thus more practical. This method first
defines f(s) as:

ψ (L(s)) ζ(s) = f(s), (22)

and applied Simpson’s formula to numerically ap-
proximate the solution to equation (20) as:∫ 1

0
f(s)ds ≈

1

3n

f(0) + 2

n
2
−1∑

j=1

f

(
2j

n

)
+

4

n
2∑

j=1

f

(
2j − 1

n

)
+ f(1)

 , (23)

where n is the division count. The larger n will
increase the accuracy. The experimental results
show that n = 200 yields adequate picture qual-
ity. Figure 6 is a schematic drawing of the above
calculations.

Figure 6: Schematic drawing of the brightness
calculation.

4. Parallel Processing with GPGPU

This research has accelerated the processing by
the GPGPU (General Purpose Graphics Process-
ing Unit) technique, in which the GPU (Graphics
Processing Unit) performs general computations
that are traditionally handled by a CPU. The pro-
posed method calculates equation (20) for each
pixel, and it is virtually impossible to render the
scene real-time with a CPU. Instead, equation
(20) can be made a process that is assigned to
a processing unit of a GPU, and the calculation
can be substantially accelerated.
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There are multiple options to utilize GPGPU
processing such as

• shader languages including HLSL and GLSL,

• CUDA language proposed by NVIDIA,

• OpenCL proposed by Khronos Group.

Shader languages are specialized for drawing and
the volume data needs to be converted to a tex-
ture, which imposes a substantial restriction in
the resolution. Although CUDA is very popular,
it can be used only on the GPUs manufactured by
NVIDIA. Considering these limitations, we have
chosen OpenCL for the experimental implemen-
tation.

5. Validation

The proposed method has been implemented and
tested on a PC shown in Table 1.

Table 1: The PC configuration used for the
validation.

Machine MacPro (Late 2013)

CPU 3.7Ghz Quad-Core Intel Xeon E5

Memory 16GB 1866Mhz DDR3 ECC

GPU AMD FirePro D500 3GB Memory

FirePro D500 consists of 1,526 stream proces-
sors.

The basic development and validation are per-
formed on MacOSX with a GPU manufactured
by AMD. The same implementation has been
tested on Windows 7 with a GPU manufactured
by NVIDIA, which showed a similar performance.

5.1. Speed performance

Tables 2 and 3 show a comparison of the speed
performance for different resolutions and sam-
pling division counts. We have tested with
three different resolutions, 128x128, 256x256 and
512x512, and two different sampling division
count, 64, 128 and 256. We have measured the
frames per second under these conditions.

Table 2: Speed performance result (Torus shaped),
all values given in frames per second.

resolution 64 div 128 div 256 div

128x128 384.61 168.63 62.35

256x256 116.69 46.49 16.85

512x512 31.23 13.49 5.21

Table 3: Speed performance result (Bézier curve), all
values given in frames per second.

resolution 64 div 128 div 256 div

128x128 116.69 60.17 28.94

256x256 34.64 17.16 8.31

512x512 9.00 4.40 2.15

Real-time rendering requires at least 60 FPS in
general. The results indicate that 256x256 reso-
lution for torus-shaped energy field, and 128x128
resolution for Bézier curve-centered energy field
are practical. Although these resolutions are
smaller compared to the recent PC monitors,
the methods for interpolating a low-resolution
texture for high-definition rendering have been
developed [17]. Such techniques work partic-
ularly well in the image that the color does
not change drastically within neighboring pix-
els, which is exactly the output of the proposed
method. With such an interpolation scheme, the
proposed method can be used for practical pur-
poses.

5.2. Output images

This section presents some examples of the out-
put images. All images are created with 256x256
resolution.

Figures 7 and 8 show a torus-shaped energy
distribution rendered from three different angles.
Parameter R of equation (7) and energy coeffi-
cient for the torus-shaped energy distribution ti
of equation (18) are also shown in the caption.
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Figure 7: Images of a torus-shaped energy
distribution. (R = 0.9, ti = 5.1)

Figure 8: Images of a torus-shaped energy
distribution. (R = 3.0, ti = 7.4)

Figures 9 and 10 are the images of the energy
distribution defined by two smoothly-connected
Bézier curves rendered from three different an-
gles. Energy coefficient for the curve-shaped en-
ergy distribution bi of equation (18) is also shown
in the caption.

Figure 9: Images of a Bézier curve-centered
energy distribution. (bi = 5.0)

Figure 10: Images of a Bézier curve-centered
energy distribution. (bi = 7.5)

Figure 11 is an image after dynamically moving
control points of the Bézier curve from the state
shown in Figure 9.

Figure 11: Images of a Bézier curve after dynamically
moving control points.

Since the proposed method re-builds the image
based on the view point and parameters in every
frame, change of view point or parameters will
not cost additional processing time.

Figure 12 shows an example of the local energy-
distribution control explained in section 2.4. The
left image of Figure 12 is rendered with maximum
intensity uniformly over the curve, and the right
image is rendered with the local-intensity series
of W = [1.0, 0.2, 0.6, 1.0, 0.5, 0.8, 1.0]. Energy co-
efficient bi = 8.0 is used for rendering the two
images.

Figure 12: Rendering without local-intensity adjust-
ment (left) and with adjustment (right).

Figure 13 shows an example of a practical ap-
plication of the proposed method.

Figure 13: Sample output images of a practical
application.
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5.3. Effect of the division count in the
numerical integration

Since this method approximates the brightness
by numerically integrating the energy field, low
division count (or large integration step) may ad-
versely affect the output image. In particular,
when combined with the small coefficient of the
energy-distribution function, the output image
may show undesired unevenness.

Figures 14 through 17 are the images rendered
with different division counts. Figures 14, 15, 16,
and 17 are the images with a torus-shaped en-
ergy distribution with energy coefficient ti = 8.0,
a torus-shaped energy distribution with energy
coefficient ti = 4.0, a curve-shaped energy dis-
tribution with energy coefficient bi = 8.0, and a
curve-shaped energy distribution with energy co-
efficient bi = 4.0, respectively. The division count
is shown underneath each image.

64 128 256

Figure 14: Torus-shaped energy distribution. (ti =
8.0)

64 128 256

Figure 15: Torus-shaped energy distribution. (ti =
4.0)

64 128 256

Figure 16: Curve-shaped energy distribution. (bi =
8.0)

64 128 256

Figure 17: Curve-shaped energy distribution. (bi =
4.0)

As can be seen in Figures 14 and 16, the dif-
ference in the rendering is almost unnoticeable
when the energy coefficient is higher. However,
as can be seen in Figures 15 and 17, undesired
unevenness becomes more apparent when the di-
vision count is lower. Although such undesired
unevenness can be avoided by choosing a higher
division count, a higher division count requires
more computation and reduces the frame rate.
The division count thus must be carefully chosen
when the energy coefficient is lower.

5.4. Discussions of potential improvement

As discussed in Section 5.3, the proposed method
yields undesired unevenness when the low divi-
sion count in the numerical integration and the
low energy coefficient are combined. A stochastic
sampling method [18] has been proposed for deal-
ing with this type of periodic unevenness. The
result of this method may be improved by apply-
ing this kind of technique. Studying the effect of
such a technique is one of future research topics.

The proposed method tends to increase the
brightness of the pixels when energy is distributed
more uniformly along the view direction, even if
the intensity of the energy is not very high, than
when high energy is concentrated in one point.
This gives unnatural impression when the view
angle is rotated. This problem can potentially
be corrected by applying a different decay func-
tion for equation (20). It is also one of the future
research topics.

6. Conclusions

This research has expanded the authors’ previ-
ous research [2] and has proposed a method for
drawing the new forms of the energy wave. In
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particular, the Bézier curve-centered energy field
can visualize free-form energy waves, and the in-
tensity over the curve can locally be controlled
by the local-intensity series. These new features
enable substantially more complex visual effects
compared to the previous technique.

The current form of the method, however, has
some obstacles to overcome to become practical.
First of all, the current method requires the de-
signer to specify numerical parameters for defin-
ing the energy distribution, which are not very
intuitive. It is necessary to provide with a tool
for editing the parameters and a graphical user
interface for easily adjusting the parameters in a
game engine. Also the hidden-surface removal,
which was implemented in the previous method,
has not been implemented and tested with the
new method, which we are working on right now.
Also, since the energy wave is a light emission
from the energy field, the surrounding objects
must reflect the light from the energy wave and
should be rendered accordingly. By addressing
these points, this method will substantially ex-
pand the graphical expressions in creative con-
tents such as computer games.
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A. Real solutions of cubic
equations

This section explains a method for calculating
real solutions of cubic equations such as:

x3 + ax2 + bx+ c = 0 (24)

by Cardano’s formula. The solution described
here is the minimum required steps. Please re-
fer to [16] for the details.

The first step is to calculate three real numbers
p, q, and r as follows:

p = −a
2

9
+
b

3
, (25)

q =
a3

27
− ab

6
+
c

2
, (26)

r = p3 + q2. (27)

Then calculate two complex numbers u and v
as follows:

u =
3

√
−q +

√
r , (28)

v =
3

√
−q −

√
r. (29)

When u and v are calculated programmatically,
this step needs to be done differently depending
on the sign of r.

• If r is zero or positive: u and v are both real
numbers.

1. Calculate s = −q +
√
r and u = 3

√
s if

s ≥ 0, or u = − 3
√
−s if s < 0.

2. Calculate t = −q −
√
r and v = 3

√
t if

t ≥ 0, or v = − 3
√
−t if t < 0.

• If r is negative: u and v are both complex
numbers.

1. Let z a complex number defined as
z = −q +

√
−r i.

2. Calculate argument of z as
θ = arctan

( q
r

)
.

3. Calculate
u = 3

√
z = 3

√
|z|

(
cos θ

3 + i sin θ
3

)
.

4. Calculate v = u.

Then calculate three complex numbers ω1, ω2

and ω3 as:

ω1 = e0 = 1, (30)

ω2 = e
2πi
3 = −1

2
+

√
3

2
i, (31)

ω3 = e
4πi
3 = −1

2
−

√
3

2
i. (32)

Then calculate:

u1 = ω1u, u2 = ω2u, u3 = ω3u,
v1 = ω1v, v2 = ω2v, v3 = ω3v.

(33)

Finally, the solutions to the cubic equation are
three of the following nine numbers:

u1 + v1, u1 + v2, u1 + v3,
u2 + v1, u2 + v2, u2 + v3,
u3 + v1, u3 + v2, u3 + v3.

(34)

The proposed method only is concerned about
the real solutions. If the cubic equation has real
solutions, all of them match the real numbers
among (34). Therefore, the purpose in the pro-
posed method is satisfied by taking the numbers
with zero imaginary part.
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