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概要

煙，水，炎，煙といった関与媒質の写実的なレンダリングはコンピュータグラフィックスにおける重要な研究テーマの一つ

である．本論文では, 関与媒質をレンダリングするためのプログレッシブフォトンビーム法に基づいた高速で物理ベースな
手法を提案する. 提案法では，プログレッシブフォトンビーム法の欠点を，アダプティブフリーパスサンプリングの採用と
光の減衰関数推定方法の改善による分散の減少によって解決する．提案法は媒質中における光の単一散乱のみならず多重

散乱も取り扱うことができ, 複雑な密度分布を持つ媒質や, 複雑な照明環境も取り扱うことができる. また，提案法により
得られる解（レンダリング結果）は厳密解に収束する. 我々は, GPUを用いて提案法を実装しており, 解を高速に得ること
ができる.

Abstract
Photo-realistic rendering of participating media, such as steam, water, fire, and smoke, is an important research topic
in the computer graphics field. We present a fast and physically based method for rendering participating media
based on the progressive photon beams method. For this, we propose a new version using adaptive free path sampling
technique and applying a new estimation method for light transmittance functions based on stratified sampling, which
overcomes the deficiencies in the progressive photon beams method. Our method is able to take into account not
only single but also multiple scattering of light inside the participating medium. Using our method, participating
media with complex density distributions can be handled, as well as complex lighting conditions. Additionally, we
can obtain images which are guaranteed to converge to exact solutions. Moreover, our method is implemented on a
GPU, enabling fast computation of the solutions.
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1 Introduction

Figure 1: Images of smoke with different density ren-
dered by our method. Each image was rendered in
less than 3 minutes.

In the field of computer graphics, photo-realistic ren-
dering of participating media is an important research
topic. Examples of participating media are cloud, steam,
fire, smoke, etc. Light inside a participating medium will
be either absorbed or scattered. The scattered light will
go in a direction according to a phase function describ-
ing the probability distribution of the scattered direction.
These effects are visually important for photo-realistic
rendering of participating media, thus need to be taken
into account.

Many algorithms have been developed for rendering
participating media. Path tracing method and volumet-
ric photon mapping [7] are examples. In particular, the
recently proposed progressive photon beams method [6]
is a more efficient method than conventional methods for
rendering participating media.

The progressive photon beams method is based on a
generalization [5] of previous participating rendering meth-
ods. In this method, photon beams are emitted from light
sources and interact with objects and the participating
media. The image is then rendered by estimating the
light transported toward the viewpoint from the distri-
bution of photon beams in the scene. However, there is
much room for improvement in this method.

First, estimating the scattering locations inside an in-
homogeneous medium is slow. The distance between suc-
cessive scattering locations is called the free path. In
the progressive photon beams method, Woodcock track-
ing [14] is used for this free path sampling. Woodcock
tracking is a method for getting statistically unbiased
samples of free paths inside an inhomogeneous medium.
However it becomes less efficient for more inhomogeneous
media. In the progressive photon beams method, render-
ing inhomogeneous media, such as smoke, cloud, fire, etc.
takes a long computation time.

Second, estimating the light transmittance function is
also inefficient. The functions are estimated by sampling
the free paths many times. If the number of samples is
insufficient, the variance becomes large. This variance
appears as visual noise in the rendered images which is
usually annoying for the viewer, especially, when render-

ing animations, in which this noise may cause flickering.
In this paper, we present a method for improving the

above two deficiencies in the progressive photon beams
method. First, to overcome the inefficiency with which
it handles inhomogeneous participating media, we utilize
the adaptive free path sampling technique [15] instead of
Woodcock tracking. Second, to estimate the light trans-
mittance function more efficiently, we present a new sam-
pling technique to reduce the variance inspired by strati-
fied sampling.

With the above improvements, inhomogeneous partici-
pating media were rendered an order of magnitude faster
compared to using the original progressive photon beams
method. Figure 1 shows images rendered using our method.

2 Related Work

We describe previous conventional methods for render-
ing participating media in Section 2.1, free path sampling
in Section 2.2 and estimation of the light transmittance
function in Section 2.3.

2.1 Rendering Participating Media

There are and have been many methods used to render
participating media. To begin with, participating media
were rendered using the method due to T.Nishita using
illumination volumes [9]. Improvements to this method
led to the rendering of light shafts [10]. In order to ob-
tain more physically correct images, path tracing method
based on radiative transfer theory [2] that simulates the
rendering equation for participating media [1] were de-
veloped. A more efficient method is volumetric photon
mapping [7]. These methods have been widely used for
rendering participating media.

Beam tracing [3] was the first method that treated light
as beams with lengths and thickness. The idea of repre-
senting light as beams is used in many methods for render-
ing participating media. Line space gathering [12] is one
such method. In this method, beams are shot from light
sources and the intersections between viewing rays from
the viewer and the beams are located. At these intersec-
tions, the radiance scattered inside media is estimated.
Recently, the photon beams method [5] was proposed.
This method generalized the previous methods in which
photons or beams were shot to estimate the radiance from
the media. Later, the photon beams method was im-
proved to give the progressive photon beams method [6]
which guarantees convergence to an exact solution. In
this paper, we have improved the progressive photon beams
method in two areas, firstly. in the free path sampling and
secondly, in estimating the light transmittance function.
We describe these below.

2.2 Free Path Sampling

The distance between successive scattering locations in
a light path is called the free path. Figure 4 illustrates
the free path. To calculate the free path, ray marching
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is typically used. In ray marching, we sample points at a
small sampling interval in a scene along the direction of
the light ray to detect the location of scattering centers.
The accuracy of estimating the free path depends on the
sampling interval. In practice this interval cannot be zero,
thus, ray marching always implies a statistical bias.

On the other hand, Woodcock tracking [14], which was
proposed in nuclear science and introduced to the com-
puter graphics field by Raab [11], enables us to obtain
free paths in an unbiased way and render an accurate im-
age. Recently, adaptive free path sampling [15] has been
proposed to enable much more efficient computation than
Woodcock tracking. In this paper, we examine the effi-
ciency of the adaptive free path sampling method when
used with the progressive photon beams method.

2.3 Function Estimation

In the progressive photon beams method, we estimate the
light transmittance functions by sampling the free paths.
There are many methods used to sample the functions. It
is known that for low dimensions, improving the distribu-
tion of random samples so that they distribute uniformly
would reduce the variance and result in faster conver-
gence. In this paper, we show that the progressive photon
beams method can also benefit from this idea by slightly
modifying the technique for estimating the light trans-
mittance function, and propose a new sampling technique
which helps reduce the noise in the rendered images. In
Monte Carlo integration, each pixel on the rendered im-
age is a random variable, therefore it has a variance. In
this paper, ”noise” is a word represents the variance in
the rendered image.

3 The Progressive Photon Beams
Method

In this section we describe the progressive photon beams
method. For rendering an image, we need to compute
the propagation of light emitted from light sources in the
scene. The equation used to model this light propagation
is called the rendering equation. In this paper, we use a
version to render participating media [5].

L(x← ω⃗) = Tr(x↔ xs)L(xs → ω⃗) + Lm(x← ω⃗),

Lm(x← ω⃗) =

∫ s

0

Tr(x↔ xt)σs(xt)

(

∫
Ω4π

fxt(θt)L(xt ← ω⃗t)dω⃗t)dt, (1)

where xs is the nearest location on the surface where a
ray from x to ω⃗ intersects the object and xt is a location
between x and xs with xt = x + tω⃗,xs = x + sω⃗. s is a
parameter between 0 and 1. Tr is the rate of light trans-
mittance between two locations, L(x→ ω⃗) is the radiance
from x towards ω⃗, L(x← ω⃗) is the radiance at x from ω⃗,
σs(x) is the scattering coefficient at x, f(x) is a normal-
ized phase function at x, and θt is the angle between the

incident and outgoing directions at xt. The phase func-
tion fx(θ) is the function which determines the ratio of
the light scattered at x when the angle is θ. By computing
Equation (1), we can render an image taking account of
inhomogeneous participating media. However, in general
we cannot solve this equation analytically, and need to
solve it by numerical calculation, e.g., using Monte Carlo
path tracing [8, 1] or volumetric photon mapping [7] de-
rived from photon mapping.

Now, we shall describe the progressive photon beams
process in detail. The process used in the progressive pho-
ton beams method resembles volumetric photon mapping
but where photon beams are used instead of photons. In
volumetric photon mapping, we shoot a lot of photons
from the light sources, simulate the interactions of pho-
tons with objects and the participating medium, and cal-
culate a photon map, which is the distribution of photons
in the scene. Once we have the a photon map, we can
calculate the radiance to the viewer using this photon
information. In the progressive photon beams method,
we shoot photon beams from the light sources. Photon
beams are represented as beams which have thicknesses
and lengths, in contrast to photons which are represented
by a geometric point in space. We simulate the transport
of the beams in a scene in the same way as volumet-
ric photon mapping, but store photon beams rather than
photons. Photon beams can be interpreted as being com-
posed of innumerable photons. In this situation, if the
number of shooting times or usage of memory is the same
as volumetric photon mapping, the photon density in a
scene can be thought of as being higher and so a more
efficient estimation can be achieved using photon beams.

Figure 2: Estimation of radiance with one photon
beam. The radius of the beam is r.

The equation below is the rendering equation using a
single photon beam. Using this equation, Equation (1)
can be solved approximately and it means that we can
calculate the effect in the participating media.

Lm(x← ω⃗) ≈ kR(r)σs(xω)Φ

Tr(x↔ xω)Tr(xω ↔ xψ)
f(ω⃗ · ψ⃗)
sin θ

,

(2)
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where kR is the kernel function, Φ is the power of the
photon beam, and θ is the angle between ω⃗ and ψ⃗. r
is the distance between the viewing ray and the photon
beams. The kernel function is used to blur the power
of single photon beams to obtain more natural images.
Figure 2 shows an illustration of this. The red line repre-
sents a single photon beam and the green line represents
the viewing ray from the viewer at x. The viewing ray
and the photon beam are skew lines. xω on the viewing
ray is the nearest point between the viewing ray and the
photon beam.

Progressive photon mapping progressively improves the
image. First, we render an image normally. Then we
shoot photon beams and render the image again. In this
way, we render many images while reducing the radii of
the beams and produce the final image by averaging all
the rendered images. This progressive process simulta-
neously reduces both the variance and the bias of the
rendered image and produces an exact solution. Reduc-
ing the radii according to the equation below guarantees
convergence of this algorithm.

Ri = R1(

i−1∏
k=1

k + α

k
)
1

i
, (3)

where Ri is the radius of the photon beams of the i-th
pass, i is the number of the pass and α is a user specified
parameter between 0 and 1. We set this parameter to 0.9
and R1 to 5.0 in this paper. Figure 3 shows images in
which the noise is reduced by this progressive processes.
Here we give an overview of the progressive photon beams

Figure 3: Images of smoke. Each is processed after n
times. The resolution is 200x400 and the total ren-
dering time is 130 sec.

method.

1. Shoot photon beams from each light source. Cal-
culate the points of interactions between the beams
and the participating medium and shoot new beams
from these locations if they are scattered. Beams
that are not scattered are absorbed, and no new
beams are generated in these cases. To estimate the
interaction points, we have to sample the free paths.

If the beam intersects an object, reflect the beam
according to the Bidirectional Reflectance Distribu-
tion Function (BRDF) and shoot the beam again.
Store all shot beams.

2. Using the distribution of photon beams calculated
in step 1, estimate the radiance and the values
of the pixels in the image. Use Equation (2) for
this estimation. In the original progressive photon
beams method, which is implemented on a GPU,
the photon beams are represented as quad poly-
gons and a GLSL fragment shader is applied for
this estimation.

3. Reduce the radii of the photon beams according to
Equation (3), and repeat step 1. Repeat steps 1 to
3 until the noise and bias in the rendered images
becomes sufficiently small, go to step 4.

4. Average the images obtained from step 1 to step 3
to obtain the final image.

In practice, these processes are implemented on GPUs
and CPUs. Photon beam shooting and estimating the
transmittance functions on a CPU is done in parallel with
estimating the radiance on a GPU. This optimization is
faster than the version run using only a single CPU.

4 Our Method

Our method acceralates the progressive photon beams
method for rendering inhomogeneous participating me-
dia. First, we use the idea of adaptive free path sampling.
Second, we change the sampling technique for estimating
the light transmittance function along the ray of a viewer.

In this section, we will describe Woodcock tracking
for free path sampling (Section 4.1) and adaptive free
path sampling to improve the progressive photon beams
method (Section 4.2). Then, we describe our new tech-
nique for estimating light transmittance functions in de-
tail (Section 4.3).

4.1 Free Path Sampling

Figure 4: The free path of light from the eye through
participating media.

Free path sampling is a core technique in rendering
participating media, and it usually determines the overall
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performance. The method for sampling the free path in
inhomogeneous participating media is different to that
in homogeneous media. First, we describe the case for
homogeneous media.

In homogeneous participating media, the free path can
be sampled using the equation below [4].

d = − log ξ

σt
, (4)

where d is the length of the free path, ξ is a random num-
ber between 0 and 1, and σt is the extinction coefficient of
the media. By sampling the free path using this equation,
the results of various algorithms, such as path tracing and
volumetric photon map converge to exact solutions. In in-
homogeneous participating media, however, the problem
is much more difficult.

The conventional method for free path sampling of in-
homogeneous participating media is ray marching. In ray
marching, we sample many points at small intervals along
the ray in the media and at each point, determine the
light transport stochastically according to the extinction
coefficient and scattering coefficient at each point. The
accuracy of ray marching depends on the interval. Since
this cannot be zero, the result is usually biased and the
rendered image is inaccurate. Woodcock tracking [14] re-
solves this accuracy problem. Using this method, a statis-
tically unbiased free path can be sampled and a physically
correct image can be obtained. We show this algorithm
in Algorithm 1 [15].

Algorithm 1 Woodcock tracking
(x0, ω⃗, kM , dmin, dmax)

Input: x0, ω⃗ : The ray starting at x0 in direction ω⃗.
kM : The majorant extinction coefficient.
(dmin, dmax] : The interval of the ray to evaluate.

Output: The free path d to the next scattering
event.
d← dmin − ln (1−rand())

kM

while d ≤ dmax ∧ k(x0+dω⃗)
kM

< rand() do

d← d− ln (1−rand())
kM

end while
return d

Woodcock tracking is an innovative free path sampling
method because it has statistically unbiased characteris-
tics compared to ray marching. However the efficiency of
this algorithm depends on the majorant extinction coeffi-
cient of the media, which is the highest extinction coeffi-
cient in the subject space. Since the progression is related
to the reciprocal of the majorant extinction coefficient
and in the case of inhomogeneous participating media,
the computation time may increase drastically even when
only a small part of the media has high extinction coef-
ficient. The original progressive photon beams method
uses Woodcock tracking and so rendering of inhomoge-
neous media is slow.

4.2 Adaptive Free Path Sampling

Figure 5: In adaptive free path sampling, Woodcock
tracking is processed in each partitioned subregion.
The red point is a scattering location.

Adaptive free path sampling [15] is an improved free
path sampling method derived from Woodcock tracking.
It has been proven that the adaptive free path sampling
technique produces a stochastically unbiased estimation
of the free path (i.e., accurate in the sense of stochas-
tic sampling). In this method, the subject space is di-
vided into subregions with the density of the participat-
ing media in the subregions begin uniform. In the origi-
nal paper [15], this splitting is done by the largest empty
rectangle problem. When sampling the free path in the
participating media, we do this by Woodcock tracking in
each subregion and advance between the subregions. Fig-
ure 5 illustrates this process. Dividing the space reduces
the majorant extinction coefficient in each subregion com-
pared to the majorant extinction coefficient in the total
space and so the computation time of each subregion is
reduced by this division. Thus, the total computing time
is also reduced. Compared to Woodcock tracking, the
adaptive free path sampling technique is much more effi-
cient for highly inhomogeneous participating media. To
implement this algorithm, the data structure for storing
the subregions is important. There are algorithms that
use various data structures [16]. In this paper we use an
octree.

Originally, adaptive free sampling was implemented for
path tracing. In this paper, we examine its efficiency
when used together with the progressive photon beams
method. It is expected that adaptive free path sam-
pling will benefit the progressive photon beams method,
because computing the free path is fundamental in this
method. Moreover, we modified the adaptive free path
sampling technique for a parallel optimized version of
the method. In the progressive photon beams method,
free path sampling is used mainly for shooting photon
beams and estimating transmittance functions. For par-
allelization, we assigned additional buffers for the random
numbers used in adaptive free path sampling and divided
the tasks into many small tasks to simultaneously uses as
many CPU cores as possible. With this modification, we
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succeeded in applying adaptive free path sampling to the
progressive photon beams method.

4.3 Estimation of the Transmittance
Function

Noise caused by 
a transmittance function

Figure 6: Example of noise caused by estimating the
light transmittance function.

Images obtained using the progressive photon beams
method converge to an exact solution by the progressive
process, but if the number of passes is insufficient or the
density of the participating media is too high, the vari-
ance, and thus the noise, of the rendered image becomes
too large. To reduce this noise, we improve the estima-
tion of the light transmittance function. Figure 6 shows
an example of this noise. The main source of the noise
is the light transmittance function, which is Tr in Equa-
tions (1) and (2). The transmittance function gives the
ratio of the transmitted light depending on the distance
travelled. In the progressive photon beams method, we
can estimate the transmittance function by sampling the
free paths along a viewing ray in the participating media.
Figure 7 illustrates the sampling method for this estima-
tion. Because all of the rendered image is averaged in
the final step, this free path is sampled many times over.
Even if the sampling number per pass is small (this lack of
samples introduces a large error when estimating the light
transmittance function), convergence to an exact solution
is guaranteed. This method is called a progressive deep
shadow map [6]. However, when the total number of sam-
ples is insufficient, using this estimated function produces
noise in the rendered image. We have improved this esti-
mation by using a method based on stratified sampling.

The number of samples per pass is four. At most it was
sixteen in the original progressive photon beams method.
Increasing this number increases the accuracy with which
the function is estimated and reduces the noise faster,
however, the progressive photon beams method needs to
be implemented on a GPU for high optimization, and the
GPU specification limits this sampling number to between
four and sixteen. Repeated sampling of the free path to
estimate the transmittance function means random sam-

pling for this function. In this paper, we modify this
random sampling method to a method derived from strat-
ified sampling. Stratified sampling is a type of sampling

Pass  -th Pass ( +1)-th

Distance

Free Path
Sampling

i i

Figure 7: Sampling to estimate the transmittance
function in the progressive photon beams method. In
each pass, we sample some free paths to estimate the
transmittance function. In this figure, four samples
are used per pass.

method. In this method, the subject area is split into
subareas and random sampling is carried out in each sub-
area. This method reduces the variance compared to ran-
dom sampling over the whole area. We developed a new
method for reducing the variance in the estimated trans-
mittance function using this idea from stratified sampling.

First, we sample the free paths with N passes at one
time and divide these paths into four groups. Next, we
choose free paths from each group at random and use
these four chosen paths for estimating the light trans-
mittance function. We do not use free paths which have
already been selected. Before the N passes have been
completed, we use pre-sampled paths for the estimate and
after the N passes have been completed, we sample the
free paths with N passes again.

Figure 8 shows a concrete example. In this example, we
sample eight free paths at one time. In this case, we divide
the eight samples into four groups and each group has two
samples. After sampling, we use four samples from each
group at pass i and another four samples at pass i+1. In
this way, the variance is less and the accuracy is greater
than simple random sampling. This stratified sampling
based approach does not increase the total computation
time and reduces the variance in estimating the transmit-
tance function. As a result, the noise in the participating
media of the rendered image is decreased.

5 Results

We implemented our method in C++ and used Microsoft
Visual C++ 2010 for the compiler. For optimization
of the progressive photon beams method, we used both
GPUs and CPUs. All images were rendered on a machine
with a 6-core 3.33GHz Intel Corei7 980 CPU and nVidia
GeForce GTX580 GPU. The total main memory was 12
GB and our renderer used between 0.5 and 1.5 GB.
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Pass  -thi Pass ( +1)-thi

Sampling some free paths at one time.

Figure 8: Illustration of sampling to estimate the
transmittance function in our method. Sampling
paths at one time and resampling of the paths in
each pass.

Some experiments were carried out. In Section 5.1, the
noise achieved by estimating the transmittance functions
using our proposed method and new sampling technique is
compared with that using the original progressive photon
beams method. In Section 5.2, we compare the reduction
in noise in some additional situations. In Section 5.3, we
show some rendered images using our proposed method
and compare the computation time.

5.1 Reduction in Noise by Estimating
the Transmittance Function with
Adaptive Free Path Sampling
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Figure 10: Visualization of the relative error. (a) is
using random sampling and (b) is using our method.
These images correspond to the regions shown by red
squares in Figure 9.

Figure 9 shows an example of the effect of our noise reduc-
tion method for estimating transmittance functions based

(a) Random Sampling (b) Our Method

Figure 9: Comparison of the noise reduction between
the original progressive photon beams method and
our proposed method. (a) is rendered using random
sampling and (b) using our method based on strati-
fied sampling. In our method, we sampled free paths
with 64 passes at one time. Both images are rendered
using 128 passes. The bottom images show detailed
views of the parts in red squares in the top images.

on stratified sampling. When the computation time is the
same, using our method (Figure 9 (b)) results in an image
with reduced noise compared to using random sampling
(Figure 9 (a)). Figure 10 is visualizes the relative error
compared to a reference image of the detailed views in
Figure 9. Figure 10 (a) has a larger error than Figure 10
(b). The graph in Figure 11 shows the relative error in the
area within the red square with the increasing number of
passes. This graph shows that when using our technique,
there is less error for the same number of passes.
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Figure 11: Graph of relative error. The horizontal
axis shows the number of progressive passes and the
vertical axis shows relative error in the area indicated
by the red squares in Figure 9. The red and green
lines show the relative errors when using our stratified
sampling technique in which 64 and 32 passes are
sampled at one time.
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5.2 Adaptive Free Path Sampling and
the New Transmittance Function
Estimation

Figure 12: Comparison between images with different
rendering methods. All images were rendered in 30
seconds. (a) was rendered by the original progressive
photon beams method. (b) was rendered by the pro-
gressive photon beams method with our new trans-
mittance function estimation(OTFE). (c) was ren-
dered with adaptive free path sampling (AFS). (d)
was rendered with OTFE and AFS. The images at
the bottom correspond to the regions in red squares
in the top images.

In this section, we compare the results from different ren-
dering methods. These are, using only the original pro-
gressive photon beams method(PPB), PPB with our new
transmittance function estimation(OTFE), PPB with adap-
tive free path sampling(AFS), and PPB with both new
methods(OTFE+AFS). We rendered the low density smoke
images in the same time, 30 seconds. Figure 12 shows the
results. The relative error of PPB, AFS and OTFE is be-
tween 1.8% and 7.6% but the relative error of OTFE+AFS
is 1.4% and so using OTFE+AFS is the best quality (The
relative errors are with respect to the reference image).

5.3 Rendered Images

We have used progressive photon mapping to render all
surfaces because we wanted to guarantee that the ren-
dered images converged to exact solutions. Progressive
photon mapping is compatible with our proposed method
based on the progressive photon beams method.

Table 1 shows the computation time and the speedup
for the images in Figures 13, 14, 15 and 16. All the ren-
dered images are of the same quality. The total compu-
tation time is, of course, important but in the progressive
photon beams method, the free path sampling causes a
bottleneck, since it takes between 70% and 95% of the
total computation time. In this paper, we have mainly

Table 1: Rendering times for different scenes. Total
is the total computation time and FPS is the time for
free path sampling. PPB shows the computation time
in seconds for the progressive photon beams method
and OM shows for our method (PPB with our new
transmittance function estimation and adaptive free
path sampling). Ratio shows the speedup when using
our method.

PPB [sec] OM [sec] Ratio

Total 280 125 2.2

FPS 220 65 3.4
Fig. 13 (a) Other 60 60 1.0

Total 1718 131 13.1

FPS 1659 72 23.0
Fig. 13 (b) Other 59 59 1.0

Total 1707 501 3.4

FPS 1447 239 6.1
Fig. 14 Other 260 262 0.99

Total 219 127 1.7

FPS 159 67 2.4
Fig. 15 Other 60 60 1.0

Total 2243 262 8.6

FPS 2161 181 11.9
Fig. 16 Other 82 81 1.0

improved this bottleneck due to the free path sampling,
so we compare the free path sampling time in the rows
labeled FPS in Table 1, in order to clearly show the effect
of our improvements.

Figure 13 is an image of smoke with lower and higher
density. The total number of progressive passes is 128
and the number of emitted photon beams is 100,000 per
pass. Adaptive free path sampling is suitable for inho-
mogeneous media. If the density is high and the dis-
tribution is nonuniform, it is faster than using Woodcock
tracking. When the density distribution is nearly uniform
and adaptive free path sampling becomes less efficient, it
still outperforms Woodcock tracking in our experimental
scenes. In this experiment, low density smoke is almost
uniformly low density, and so the speedup is lower; 2.2 in
total and 3.4 for free path sampling. On the other hand,
with high density smoke the speedup is greater, 13.1 in
total and 23.0 for free path sampling.

Figure 14 is a smoke scene with a glass sphere. The
image resolution is 512x512 and the total number of pro-
gressive passes is 256 and the number of emitted beams
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Figure 13: (a) Smoke with lower density. (b) Smoke
with higher density.

is 200,000 per pass. In this scene we place a glass sphere,
and the scene is filled by a homogeneous participating
medium and contains inhomogeneous smoke. This scene
is similar to Figure 13, and so for this scene our method
is very efficient. The speedup of the total time is 3.4 and
that for the free path sampling is 6.1.

Figures 15 and 16 are cloud images. The total num-
ber of pass is 128 and the number of emitted beams is
100,000 per pass. Since the cloud density is nonuniform,
rendering clouds is suitable for adaptive free path sam-
pling and our adaptive method. Figures 15 and 16 show
a simple fractal cloud and a cirrocumulus. In the fractal
cloud scene, the speedup for free path sampling is 2.4 and
in the cirrocumulus scene the speedup of the total time is
8.6 and that of the free path sampling is 11.9. So, both
these scenes are rendered much faster.

Figures 17 and 18 are examples of images that can be
rendered efficiently using our method. Figure 17 is a scene
in which we locate glass objects above a lambert surface
as a floor. Light sources are located above these objects
and their colors are red, green and blue. This scene is
filled by gas generated with a random noise function. We
can see caustics not only on the participating medium but
also on the floor. The total rendering time is 500 minutes,
and the participating medium was rendered in less than
5 minutes. Figure 18 is a cloud scene with shafts of light
passing through gaps in the clouds. The total rendering
time is 200 seconds.

6 Conclusion and Future Work

In this paper we overcame the deficiencies in the progres-
sive photon beams method. In our method, we used par-
allelized adaptive free path sampling and improved the

Figure 14: Smoke with a glass sphere. The image
resolution is 512x512.

Figure 15: Single fractal cloud. The image resolution
is 512x256

Figure 16: A cirrocumulus. The image resolution is
512x256
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Figure 17: Glass objects and floor.

Figure 18: Shafts of light passing through gaps in the
clouds.

Figure 19: Single fractal cloud at sunset.

estimation of the light transmittance functions. Through
these improvements, we succeeded in developing a new
version of the progressive photon beams method that can
efficiently handle not only homogeneous media but also
inhomogeneous media.

The user specified parameter (α in Equation (3)) used
in the progressive photon beams method and progressive
photon mapping was left constant in this paper, but it
could be determined adaptively. This parameter is re-
lated to the speed of convergence of rendering, and so if
it could be determined depending on the scene, the speed
of convergence would be faster than our method. In par-
ticular, the parameters in the progressive photon beams
method have not yet been well researched, so there is
room for optimization here.
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